

Last Update – Connectome Informed Attention

Andres Zapata | Mohamed Said Derbel | Niklas Bühler Munich, November 2022

Last Update – Connectome Informed Attention

Overview

- Goal
- Current Status
- 2. Final Evaluation & Discussion
 - Big Picture Analysis
 - Result Analysis
 - Significance of Connectivity
- 3. Future Work

- Goal
- Current Status

- Goal
- Current Status

Goal

Connectivity-informed future Tau-accumulation prediction in Schaefer ROIs

- Goal
- Current Status

Current Status

	Test Loss	Test Accuracy
MLP	0.036	0.898
LSTM	0.0297	0.939
Transformer	0.03215	0.9482
Early Fusion	0.0282	0.9529
Late Fusion	0.0441	0.9120
Initialized Attention	0.0306	0.9445
Dual-Encoder	0.035	0.91
Triformer	0.0312	0.9498
Connectome-head	0.0319	0.9438

Current status

How meaningful are our predictions?

How is the model's performance across different classes and input lengths?

Is connectivity data **significantly** improving our results?

If so, which architecture profits the most from the connectivity matrix?

2. Final Evaluation & Discussion

- Big Picture Analysis
- Result Analysis
- Significance of Connectivity

2. Final Evaluation & Discussion

- Big Picture Analysis
- Result Analysis
- Significance of Connectivity

Input length/Class Distributions for Test Set

MSE per Class for Train and Test Set

Mean squared error (MSE) per diagnosis class (test set)

MSE per sequence length for Train and Test Set

200

200

prediction ground_truth

first_session

200

MSE per Class for Train and Test Set

2. Final Evaluation & Discussion

- Big Picture Analysis
- Result Analysis
- Significance of Connectivity

Predictions follow trends of Targets, despite differing Input

Cognitively Normal

Mild Cognitive Impairment

Mild Cognitive Impairment

Target

Dementia

Target

Prediction

2. Final Evaluation & Discussion

- Big Picture Analysis
- Result Analysis
- Significance of Connectivity

Current Status

Significance of Connectivity

Welch's t-test

Assumptions:

- Populations are normally distributed
- Populations are sampled randomly and independently

No assumption on equal variances required

Null Hypothesis:

There is **no significant** difference between the means of the two samples $\mu_a \approx \mu_b$

Alternate Hypothesis:

There is significant difference between the means of the two samples $\mu_a \neq \mu_b$

Significance of Connectivity

Null Hypothesis: There is **no significant** difference between the means of the two samples $\mu_a \approx \mu_b$

If **p-value < 0.05**

we reject this hypothesis and accept the Alternate Hypothesis

Alternate Hypothesis: There **is significant** difference between the means of the two samples $\mu_a \neq \mu_b$

Our result : 0.0218 for early fusion

We reject Null Hypothesis and accept Alternate Hypothesis !!

3. Future Work

Future Work

Connectivity

Visualization of the target/prediction/input tau values for a patient with dementia (input: 6 sessions)

Connectivity

Thank you for your attention!