
Bayesian Deep Learning – A Stochastic Dynamics Perspective

Niklas Bühler
Technical University of Munich

School of Computation, Information and Technology
niklasbuehler@mailbox.org

Abstract

Bayesian statistics provides an alternative approach for
training and evaluating neural networks, which allows for
the incorporation of uncertainty as well as prior knowledge.

Stochastic dynamics is a branch of mathematics that
deals with the study of systems that evolve over time and are
subject to random fluctuations. As such, it provides a frame-
work for modeling stochastic training processes of Bayesian
neural networks.

This report gives an overview of Bayesian deep learning
from a stochastic dynamics perspective by first introducing
Bayesian deep learning as well as two important methods
for training Bayesian neural networks, and then building
upon this fundament by presenting various approaches and
variations inspired by stochastic dynamics.

1. Introduction
Bayesian deep learning differs from conventional fre-

quentist deep learning by incorporating uncertainty into the
model and its learning process. Training a Bayesian neural
network is equivalent to performing Bayesian inference of a
network’s parameters, which involves finding the posterior
probability distribution of the parameters given the training
data. However, an exact evaluation of this probability dis-
tribution is typically intractable.

There are two approaches to solving this issue. One
is to perform variational inference instead of exact infer-
ence. This method is part of the Bayes by Backprop algo-
rithm. Another approach is to use Markov Chain Monte
Carlo (MCMC) methods to sample from the posterior dis-
tribution. One specific MCMC method is the Hamiltonian
Monte Carlo (HMC) algorithm, which is based on Hamilto-
nian dynamics. However, the exact application of the HMC
algorithm requires gradient computations over the whole
dataset and is thus oftentimes computationally infeasible in
practice.

Stochastic dynamics provides a way of describing
stochastic processes and thus can serve as a framework

for formulating and analyzing stochastic versions of
algorithms. For example, conventional learning algorithms
can be transformed into Bayesian learning algorithms by
incorporating stochasticity in different ways. Another
application of stochastic dynamics in this report is the
formulation of stochastic variants of the presented HMC
algorithm, allowing its application to large datasets and
thus enabling its use in practice.

The general concepts of Bayesian deep learning and
Bayesian neural networks, as well as the Bayes by Back-
prop algorithm are introduced in Sec. 2. In Sec. 3, Markov
Chain Monte Carlo methods as well as Hamiltonian dynam-
ics are introduced. These two concepts are then combined
in the Hamiltonian Monte Carlo algorithm. Stochastic dy-
namics is introduced in Sec. 4 and serves as a framework
for defining multiple stochastic variations of the previously
presented algorithms. Finally, in Sec. 5, this report is sum-
marized and the main insights are briefly put into context.

2. Bayesian Deep Learning
The term Bayesian deep learning describes the applica-

tion of methods from Bayesian statistics to deep learning.
This approach allows for the integration of uncertainty into
neural networks, which not only makes it possible to as-
sess the degree of certainty of predictions, but also leads to
richer representations through cheap model averaging and
regularization. Furthermore, by incorporating a prior prob-
ability distribution, the Bayesian approach allows for the
injection of expert knowledge into the learning process.

In Sec. 2.1, Bayesian deep learning is introduced and
contrasted against conventional frequentist deep learning.
In Sec. 2.2, the Bayes by Backprop algorithm is introduced,
followed by a brief assessment of its performance.

The content of this section is based on [7] and [2].

2.1. Frequentist and Bayesian Deep Learning

Conventional frequentist learning of a neural network
fits the networks parameters to a single “optimal” set of
values w∗ that corresponds to the maximum likelihood

1

estimate argmaxw P (D | w) given the training data D.
A conventional neural network f then uses these fixed
parameters w∗ to produce a prediction ŷ about a previously
unseen data point x, i.e. ŷ = f(x,w∗).

In contrast, Bayesian deep learning uses the training data
D to find the posterior probability distribution P (w | D)
over all possible weight vectors. The weights in a Bayesian
neural network are thus represented by probability dis-
tributions over all possible values, rather than having a
fixed value as in conventional neural networks (see Fig. 1).
This posterior probability distribution can be obtained using
Bayes’ theorem

P (w | D) = P (D | w)P (w)

P (D)
, (1)

where P (D | w) describes the likelihood of the data given
the weights as used in frequentist learning, P (w) denotes
the prior distribution of the network weights and P (D) is
the probability of the data. A Bayesian neural network then
forms predictions by taking expectations, i.e. the outputs
obtained from all models with all possible weight vectors
are averaged, each contributing in proportion to its posterior
probability. The whole prediction process consists of the
following steps:

1. Define the prior distribution for the weight vectors, e.g.
give each weight a Gaussian prior with zero mean and
standard deviation σ: P (w) ∝ exp(−|w|2/2σ2).

2. Formulate the posterior distribution over the weight
vectors given the training data D using Bayes’ The-
orem: P (w | D) ∝ P (w)P (D | w).

3. Given the input vector x, the model predicts

ŷ = Ew∼P (w|D)[f(x,w)]

=

∫
f(x,w)P (w | D)dw.

(2)

However, the integral in Eq. (2) is typically intractable,
as the dimensionality of w is very large and the neural net-
work f isn’t suitable for exact integration. Furthermore, an
exact evaluation of the posterior distribution P (w | D) is
typically intractable as well.

One possible solution to this problem is to perform vari-
ational inference of P (w | D), as explained in Sec. 2.2.

Another solution is to sample from the posterior using
Markov Chain Monte Carlo (MCMC) methods and then
evaluate the expectation of Eq. (2) using Monte Carlo ap-
proximations. MCMC methods are discussed in Sec. 3.1.

Figure 1. Comparison between Frequentist and Bayesian Neu-
ral Networks: Left: In a conventional frequentist neural network,
each weight has a fixed value. Right: In a Bayesian neural net-
work, each weight is modeled by a probability distribution. Figure
taken from [2].

2.2. Bayes by Backprop

Bayes By Backprop is an approximate learning algo-
rithm similar to backpropagation, proposed in [2]. It per-
forms variational inference of the posterior distribution of a
Bayesian neural network, i.e. a variational approximation is
optimized instead of the full posterior distribution.

Note that although this method trains an infinite ensem-
ble of neural networks using unbiased Monte Carlo esti-
mates of the gradients, it typically only doubles the number
of parameters, as is shown below.

Variational Bayesian Learning Variational learning can
be used to find the parameters θ∗ of a variational distribu-
tion of the weights q(w | θ) that minimize the Kullback-
Leibler (KL) divergence from the true Bayesian posterior
of the weights:

θ∗ = argmin
θ

KL[q(w | θ) || P (w | D)]

= argmin
θ

∫
q(w | θ) log q(w | θ)

P (w)P (D | w)
dw

= argmin
θ

KL[q(w | θ) || P (w)]

− Eq(w|θ)[logP (D | w)].

(3)

The resulting cost function is called variational free en-
ergy or expected lower bound (ELBO). It is denoted as

F(D, θ) =KL[q(w | θ) || P (w)]

− Eq(w|θ)[logP (D | w)].
(4)

This term is the sum of a data-dependent part (likelihood
cost) and a prior-dependent part (complexity cost). Thus, it
embodies a trade-off between satisfying the complexity of
the data D and the simplicity prior P (w).

Unbiased Monte Carlo Gradients To evaluate F(D, θ),
one can apply the Monte Carlo method together with a gen-
eralization of the Gaussian reparameterization trick.

2

First, approximate the exact cost F (D, θ) by∫
q(w | θ) log q(w | θ)

P (w)
dw − Eq(w|θ)[logP (D | w)]

≈
n∑

i=1

log q(w(i) | θ)− logP (w(i))− logP (D | w(i)),

(5)

with w(i) denoting the i-th Monte Carlo sample drawn
from the variational posterior q(w(i) | θ).

Next, let ϵ ∼ q(ϵ) and w = t(θ, ϵ), where t is a determin-
istic function. Suppose q(w | θ) is such that q(ϵ)dϵ = q(w |
θ)dw. For f(w, θ) = log q(w | θ) − logP (w)P (D | w),
the derivative of its expectation can be expressed as the ex-
pectation of a derivative:

∂

∂θ
Eq(w|θ)[f(w, θ)] = Eq(ϵ)[

∂f(w, θ)

∂w

∂w

∂θ
+

∂f(w, θ)

∂θ
],

(6)

as is shown in [2]. This result will be used to calculate the
gradients in the next step.

Gaussian Variational Posterior The deterministic func-
tion t(θ, ϵ) transforms a sample of parameter-free noise ϵ
and the variational posterior parameters θ into a sample
from the variational posterior.

For the Gaussian case, the posterior sample of the
weights is

w = t(θ, ϵ)

= µ+ σ ◦ ϵ
= µ+ log(1 + exp(ρ)) ◦ ϵ,

(7)

where ◦ denotes pointwise multiplication and θ = (µ, ρ) are
the variational posterior parameters. The standard deviation
is parameterized as σ = log(1+ exp(ρ)). In this case, each
weight has two degrees of freedom (in µ and ρ), doubling
the number of parameters in the network.

The whole optimization process in the Gaussian case can
thus be summed up as

1. Sample ϵ ∼ N (0, I).

2. Let w = µ+ log(1 + exp(ρ)) ◦ ϵ.

3. Let θ = (µ, ρ).

4. Let f(w, θ) = log q(w | θ)− logP (w)P (D | w).

5. Calculate the gradient w.r.t. the mean

∆µ =
∂f(w, θ)

∂w
+

∂f(w, θ)

∂µ
. (8)

6. Calculate the gradient w.r.t. the standard deviation pa-
rameter ρ

∆ρ =
∂f(w, θ)

∂w

ϵ

1 + exp(−ρ)
+

∂f(w, θ)

∂ρ
. (9)

7. Update the variational parameters

µ← µ− α∆µ

ρ← ρ− α∆ρ.
(10)

Note that the term ∂f(w,θ)
∂w which is shared by both gradients

describes exactly the gradient found by the usual backprop-
agation algorithm. Thus, to learn both mean and standard
deviation, one simply has to calculate the usual gradients
and then scale and shift them as described above.

Scale Mixture Prior In the original paper [2], a scale
mixture of two Gaussian densities is used as the prior. All
prior parameters are shared by all the weights.

The priors don’t necessarily have to be Gaussians. Nev-
ertheless, Gaussians lend themselves easily to analytical
handling and are therefore a practical choice.

2.2.1 Performance of Bayesian Neural Networks

Networks trained with the Bayes by Backprop algorithm
achieve good results in several domains, as has been shown
in [2] for a simple classification task, but also when em-
ployed in reinforcement learning tasks via Thompson sam-
pling.

Classification on MNIST For a classification task on the
MNIST dataset, it is shown in [2], how a Bayesian neural
network trained using Bayes by Backprop achieved an im-
proved performance compared to simple feedforward neu-
ral networks (test error of 1.32% instead of 1.6%). The
achieved performance is similar to that achieved by using
dropout (test error of 1.3%).

An interesting result stems from eliminating some of the
weights during runtime. First, the weights were ordered by
their signal-to-noise ratio (|µi|/σi), then those with the low-
est ratio were removed by replacing their variational poste-
rior with a constant zero.

Even when 95% of weights are removed, the network
still performs well, as can be seen in Tab. 1. Hence, even
though introducing additional degrees of freedom for each
weight multiplies the amount of parameters in the network,
only a few of these parameters need to be stored at runtime.

3. Hamiltonian Monte Carlo
The posterior distributions utilized in Bayesian deep

learning are oftentimes extremely difficult to sample from

3

Proportion removed # Weights Test Error
0% 2.4m 1.24%
50% 1.2m 1.24%
75% 600k 1.24%
95% 120k 1.29%
98% 48k 1.39%

Table 1. Effects of Weight Pruning: When eliminating a large
percentage of weights with low signal-to-noise ratio from the
MNIST classifier during runtime, test performance stays high. Re-
sults taken from [2].

and thus don’t allow for direct sampling. Markov Chain
Monte Carlo (MCMC) methods comprise an approach to
sample indirectly from such distributions.

The Metropolis-Hastings (MH) algorithm is a typical
MCMC method for obtaining a sequence of random sam-
ples from a target distribution.

The Hamiltonian Monte Carlo (HMC) algorithm is an-
other MCMC method. It simulates Hamiltonian dynamics
to define distant state proposals with high acceptance prob-
abilities in a Metropolis-Hastings framework.

In this section, the general framework of Markov Chain
Monte Carlo methods is briefly explained in Sec. 3.1. This
includes their general workings, as well as the Metropolis-
Hastings algorithm. Next, Hamiltonian dynamics and a way
to discretize its simulation are introduced in Sec. 3.2. Fi-
nally, in Sec. 3.3, the two concepts are brought together to
define the Hamiltonian Monte Carlo algorithm.

The content of this section is based on [8] and [7].

3.1. Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods comprise
a useful approach to sample from probability distributions
that are otherwise hard to sample from. They operate by
constructing a Markov chain that has the desired distribu-
tion as its equilibrium distribution.

Thus, they offer an alternative way to variational infer-
ence (see Sec. 2.2) for working with complicated posterior
distributions.

Metropolis-Hastings Algorithm The Metropolis-
Hastings (MH) algorithm is a typical MCMC method.
It can draw samples from any probability distribution
for which the probability density can be evaluated up to a
normalizing constant. This is particularly useful in practice,
as calculating the normalization factor is often difficult.

The MH algorithm works by generating a sequence of
sample values which approximate the desired distribution
more closely as more sample values are produced. The al-
gorithm iteratively produces a candidate for the next sample
value, based only on the current sample value, hence mak-
ing the sequence of samples a Markov chain. This candidate

value is then either accepted or rejected with an acceptance
probability that is based on the ratio of the probability den-
sities for the current and candidate sample values.

The algorithm works as follows: Let f(x) ∝ P (x)
be a function that is proportional to the target distribution
P (x) and choose a proposal density g(x | y). This pro-
posal density suggests a candidate for the next sample value
x, given the current sample value y. A typical choice is
g(x | y) = N (y, σ), generating a random walk of samples
in which points closer to y are more likely to be visited next.

First, choose an arbitrary point x0 as the initial sample
value. Then, for each iteration t, a candidate value x′ is
generated by sampling from the distribution g(x′ | xt). The
acceptance ratio of this candidate is given as

α =
f(x′)

f(xt)
=

P (x′)

P (xt)
, (11)

because f(x) ∝ P (x).
The acceptance decision can be handled by generating a

uniform random number u ∈ [0, 1]. If u ≤ α, the candidate
x′ is accepted and xt+1 = x′. Otherwise, it is rejected and
xt+1 = xt.

3.2. Hamiltonian Dynamics

The random walk approach used in the Metropolis-
Hastings algorithm is inefficient, as it blindly proposes can-
didate samples from the vicinity of the current sample.

The essential property of Hamiltonian dynamics is that
the probability to arrive at a position during its simulation
corresponds to the exponential of the potential energy at
this position. If the potential energy is thus chosen to be
the logarithm of some target distribution, a simulation of
Hamiltonian dynamics will yield perfect samples from this
target distribution. The Hamiltonian Monte Carlo algorithm
simulates Hamiltonian dynamics in order to propose better-
informed candidates, which leads to a more efficient explo-
ration of the sample space.

In order to define the HMC algorithm afterwards, this
section introduces Hamiltonian dynamics, as well as a way
to discretize its simulation.

A Two-dimensional Analogy Hamiltonian dynamics can
be visualized in two dimensions as a frictionless puck that
slides over a surface of varying height, as was proposed
in [8]. The state of this system is described by

1. the position q ∈ R2 of the puck,

2. the momentum q ∈ R2 of the puck (its mass times
velocity).

The potential energy U(q) of the puck is proportional to
the height of the surface at position q. Its kinetic energy
K(p) is equal to |p|2/(2m), with m being its mass.

4

The movement of the puck across the surface depends
on the slope at its current position as well as its momentum.
On a level part of the surface, the puck moves at a constant
velocity, equal to p/m. On a rising slope, its momentum
allows it to continue, while its kinetic energy decreases and
its potential energy increases. Once the kinetic energy (and
thus also p) is zero, the puck will slide back down, this time
with its kinetic energy increasing again, while its potential
energy decreases.

When simulating Hamiltonian dynamics for obtaining a
sequence of random samples, the position variables corre-
spond to the variables of interest and the potential energy
is the negative log likelihood of these variables. The mo-
mentum variables on the other hand, one for each position
variable, will be introduced artificially.

3.2.1 Hamilton’s Equations

Hamiltonian dynamics describes a system with a state
consisting of a d-dimensional position vector q and a d-
dimensional momentum vector p, so that the full state space
consists of 2d dimensions. The Hamiltonian H(q, p) is a
function of q and p that descibes this system.

Equations of Motion The change of q and p over time t is
determined by partial derivatives of the Hamiltonian which
are given according to Hamilton’s equations:

dq

dt
=

∂H

∂p
(12)

dp

dt
= −∂H

∂q
(13)

These equations define a mapping Ts for any time duration
s, which maps the state at time t to the state at time t+ s.

Potential and Kinetic Energy The Hamiltonian can usu-
ally be written as

H(q, p) = U(q) +K(p). (14)

In this form, U(q) is called the potential energy. It is typ-
ically defined as the negative log probability density of the
target distribution for q plus any constant that is convenient.

The term K(p) is called the kinetic energy. It is practical
to use a quadratic function for the kinetic energy K(p) =
pTM−1p/2, because then p will have a zero-mean multi-
variate Gaussian distribution. The components of p are of-
ten chosen to be independent with variances mi, simplify-
ing the kinetic energy to K(p) =

∑d
i=1

p2
i

2mi
. Setting the

variances to mi = 1 further simplifies the formula to

K(p) =

d∑
i=1

p2i
2

=
1

2
|p|2. (15)

The term K(p) thus corresponds to the negative log prob-
ability density (plus a constant) of the zero-mean Gaussian
distribution with identity covariance matrix M = I .

Using these simplifications, Hamilton’s equations can be
written as

dq

dt
= p, (16)

dp

dt
= −∇U(q). (17)

3.2.2 Discretization of Hamiltonian Dynamics

When simulated in a computer, Hamilton’s equations must
be approximated by discretizing time, using some small
step size ϵ. The simulation starts with the state at time 0
and iteratively computes the approximated state at times
ϵ, 2ϵ, . . . In the following, it is assumed that the Hamil-
tonian has the form H(q, p) = U(q) + K(p) with ki-
netic energy K(p) = 1

2 |p|
2, leading to the simplified forms

of Eqs. (16) and (17).

The Leapfrog Method The leapfrog method is a fairly
simple method for simulating Hamiltonian dynamics in a
discrete way. Given a step size ϵ, an iteration of the leapfrog
method is given by the update equations

p(t+ ϵ/2) = p(t)− ϵ

2
∇U(q(t)) (18)

q(t+ ϵ) = q(t) + ϵp(t+ ϵ/2) (19)

p(t+ ϵ) = p(t+ ϵ/2)− ϵ

2
∇U(q(t+ ϵ)). (20)

Each iteration starts with a half step for the momentum
variables (Eq. (18)), then does a full step for the position
variables, using the new values of the momentum variables
(Eq. (19)). Finally, another half step for the momentum
variables is performed, this time using the new values of the
position variables (Eq. (20)). This method preserves volume
in (q, p) space exactly.

3.3. MCMC from Hamiltonian Dynamics

In order to use Hamiltonian dynamics to sample from
a distribution, the density function of this distribution has
to be translated to a potential energy function and auxiliary
“momentum” variables have to be introduced. To obtain
samples, a Markov chain is generated, in which each iter-
ation resamples the momentum variables and performs a
Metropolis update with a proposed new state obtained via
Hamiltonian dynamics.

5

3.3.1 Canonical Distributions

The canonical distribution for an energy function E(x) for
state x is defined as

P (x) =
1

Z
exp(−E(x)/T), (21)

where T is the temperature of the system and Z is a normal-
izing constant needed for this function to integrate to one.
Viewing this definition the opposite way, a target distribu-
tion P (x) can be formulated as a canonical distribution with
T = 1 by letting

E(x) = − logP (x)− logZ, (22)

where Z is any convenient positive constant.
Because the Hamiltonian is an energy function for the

joint state of position q and momentum p, it also defines a
joint distribution:

P (q, p) =
1

Z
exp(−H(q, p)/T). (23)

As H is invariant under Hamiltonian dynamics, a Hamilto-
nian trajectory will move within a hyper-surface of constant
probability density. The joint density of a Hamiltonian with
the form H(q, p) = U(q)+K(p) can be obtained by simply
inserting:

P (q, p) =
1

Z
exp(−U(q)/T) exp(−K(p)/T). (24)

Note that the variables q and p are independent in Eq. (24)
and each have canonical distributions with energy functions
U(q) and K(p).

3.3.2 Energy Formulation of Bayesian Learning

Recall that q was used to represent variables of interest,
while p was introduced just to allow Hamiltonian dynam-
ics to operate. For Bayesian deep learning, the goal is to
sample weight vectors qt from their posterior distribution
P (q | D). This target distribution can be expressed as a
canonical distribution (with T = Z = 1) using a potential
energy function defined as

U(q) = − logP (q | D), (25)

such that
P (q | D) = exp(−U(q)). (26)

The distribution for the momentum variables p can be
chosen arbitrarily and is specified via the kinetic energy
function K(p), which is typically defined as K(p) = 1

2 |p|
2,

corresponding to a multivariate Gaussian distribution.

The Hamiltonian is defined as the sum of the potential
and kinetic energy:

H(q, p) = U(q) +
1

2
|p|2. (27)

According to Eqs. (23) and (24), this Hamiltonian defines a
joint probability distribution over the phase space of (q, p):

P (p, q) ∝ exp(−H(q, p))

= exp(−U(q)−K(p))

= exp(−U(q)) exp(−K(p))

= P (q | D) exp(−K(p)).

(28)

As mentioned before, q and p are independent in such an
equation and the marginal distribution for q in Eq. (28) is
again the original target distribution P (q | D). To sample
from the target distribution, one can therefore instead sam-
ple from this joint distribution for q and p, and just ignore
the values obtained for p.

3.3.3 Simulating Hamiltonian Dynamics for Bayesian
Learning

Simulating the Hamiltonian dynamics of the system
through fictitious time t is achieved according to Eqs. (16)
and (17). Note that this dynamics leaves H constant and
preserves the volumes of regions in phase space. There-
fore, it visits points on a surface of constant H with uniform
probability.

As the leapfrog method (Eqs. (18) to (20)) also exactly
maintains the preservation of phase space volume, it’s a
suitable discrete approximation for simulating the dynam-
ics. However, the leapfrog method doesn’t leave H con-
stant, leading to slightly suboptimal acceptance probabili-
ties in the MH framework.

3.3.4 The Hamiltonian Monte Carlo Algorithm

The Hamiltonian Monte Carlo (HMC) algorithm is a vari-
ant of the Metropolis-Hastings (MH) algorithm, which gen-
erates a Markov chain by considering random changes to its
state. In contrast to the MH algorithm, candidate changes
are produced by picking a random value for p via the joint
distribution of (q, p) and then performing some predeter-
mined number of leapfrog steps.

The algorithm consists of two steps. The first step only
changes the momentum variables, while the seconds step
may change both position and momentum variables. Both
steps leave the canonical joint distribution of (q, p) invari-
ant. The steps are the following:

1. Draw a new momentum vector p from its multivariate
Gaussian distribution.

6

2. Perform a Metropolis update with a candidate state ob-
tained via Hamiltonian dynamics.

In the first step, the momentum variables are reset by ran-
domly drawing new values from their Gaussian distribution,
independent of the current momentum or position variables.
This step leaves the canonical joint distribution invariant, as
q remains unchanged and p is drawn from its correct condi-
tional distribution given q, which is the same as its marginal
distribution because q and p are independent.

In the second step, a Metropolis update is performed
for a candidate state obtained via Hamiltonian dynamics.
Given the current state (q, p), Hamiltonian dynamics is sim-
ulated for L steps via the leapfrog method, as described
in Sec. 3.3.3. After performing these L steps, the momen-
tum variables are negated, giving a candidate state (q∗, p∗).
This proposed state is then accepted as next state in the
Markov chain with probability

min[1,
P (q∗, p∗)

P (q, p)
] = min[1, exp(−H(q∗, p∗) +H(q, p))]

= min[1, exp(−U(q∗) + U(q)−K(p∗) +K(p))].

(29)

A candidate change is thus always accepted if it low-
ers the energy H or leaves it unchanged. If the change
would increase the energy, it is accepted with probability
exp(−∆H) = exp(−H(q∗, p∗) + H(q, p)), otherwise re-
jected. For an exact simulation of Hamiltonian dynam-
ics, these proposed changes would always be accepted,
but since the leapfrog method is only approximate, H can
sometimes increase and thus changes are sometimes re-
jected.

4. Stochastic Dynamics
Stochastic dynamics describes the dynamics of a system

that is subject to random fluctuations. Thus, it can serve
as a framework for performing Bayesian learning and also
for describing stochastic variations of the presented MCMC
algorithms. For algorithms like the presented HMC algo-
rithm, such stochastic variations are a necessity for practi-
cal use, because the full gradient computation of ∇U(q) is
computationally infeasible on large datasets.

In Sec. 4.1, alternative approaches to Bayesian deep
learning are presented from a stochastic dynamics perspec-
tive. Stochastic variations of the HMC algorithm are intro-
duced in Sec. 4.2.

The ideas described in this section are based on [6], [1],
[5], [3], and [10].

Stochastic Gradient Methods Stochastic gradient (SG)
methods offer an efficient way of calculating the approx-
imate gradient for a loss function L defined on parame-
ters θ for large datasets. The central idea of SG methods

is to replace the exact gradient ∇θL(θ) with a stochastic
approximation ∇θL̃(θ). This noisy estimate is based on
a minibatch D̃ sampled uniformly at random from the full
dataset D. For example, when minimizing the negative log-
likelihood of a posterior probability distribution P (θ | D),
the loss gradient is approximated as:

∇θL(θ) ∝ −∇θ logP (D | θ)−∇θ logP (θ)

≈ −N

n

∑
x∈D̃

∇θ logP (x | θ)−∇θ logP (θ).

(30)

Here, N = |D| denotes the size of the full dataset and n =
|D̃| denotes the size of the minibatches.

By assuming that the observations x ∈ D are indepen-
dent and appealing to the central limit theorem, the exact
gradient can thus be approximated as

∇θL̃(θ) ≈ ∇θL(θ) +N (0,V[θ]). (31)

Empirically, a minibatch size in the order of hundreds of
data points is sufficient for the central limit theorem approx-
imation to be valid.

Stochastic gradient descent (SGD) describes the method
of minimizing a given loss function L(θ) by updating the
parameters θ according to the stochastic gradient:

θt+1 = θt − ϵ∇θL̃(θ), (32)

where ϵ is called the step size.

4.1. Stochastic Dynamics in Bayesian Learning

Conventional frequentist learning can be made Bayesian
by introducing only slight modifications to the optimization
algorithm.

For example, by picking a specific learning rate and
keeping it constant or by introducing the right kind of noise
into stochastic gradient descent, this method can be used
to perform Bayesian learning. These two approaches are
briefly presented in this section.

4.1.1 Stochastic Gradient Descent as Approximate
Bayesian Inference

Stochastic Gradient Descent (SGD) with a constant learn-
ing rate simulates a Markov chain with stationary distribu-
tion, as is shown in [6]. This so called Constant Stochastic
Gradient Descent (CSGD) can be used as an approximate
Bayesian posterior inference algorithm for large datasets.

Conventional SGD optimizes a function by following
noisy gradients with a typically decreasing step size. This
procedure provably attains the optimum (or a local optimum
for non-convex functions), while at the same time allowing
efficient optimization using massive amounts of data.

7

In contrast, constant SGD moves towards an optimum
of the objective function as well, but then bounces around
its vicinity, as the learning rate doesn’t decrease to allow
for smaller step sizes. The central idea of constant SGD is
to use the resulting stationary distribution of the simulated
Markov chain to approximate the posterior. This can be
achieved with minimal implementation effort.

Assumptions First, however, four assumptions have to be
made:

1. Invoking the central limit theorem, assume that the
gradient noise is Gaussian with covariance 1

nV[θ],
where n describes the minibatch size.

2. Assume that the covariance matrix of θ is approxi-
mately constant w.r.t. θ: V[θ] ≈ C. As a sym-
metric positive-semidefinite matrix, C factorizes as
C = BBT .

3. Assume the finite-difference equation

∆θt = θt+1 − θt = −ϵ∇θL(θt) +
ϵ√
n
B∆W (33)

with ∆W ∼ N (0, I) can be approximated by the
stochastic differential equation

dθt = −ϵ∇θL(θ)dt+
ϵ√
n
BdW (t). (34)

4. Assume that the stationary distribution of the iterates
θt is constrained to a region where the loss is well ap-
proximated by a quadratic function

L(θ) ≈ 1

2
θTAθ. (35)

These assumptions result in a specific kind of stochas-
tic process, called multivariate Ornstein-Uhlenbeck process
[9]. This process has an analytical stationary distribution
that is Gaussian, which is used in [6] to analyze the proper-
ties of SGD and prove the following results.

Constant SGD The optimal constant learning rate for
minimizing the KL divergence from the stationary distri-
bution of CSGD to the posterior is

ϵ∗ = 2
n

N

D

Tr[BBT]
, (36)

where n is the minibatch size, N is the size of the full
dataset, D is the dimension of θ and V(θ) ≈ C = BBT , as
above.

Preconditioned Constant SGD Instead of a scalar learn-
ing rate, a preconditioning matrix can be used. The optimal
full preconditioner for constant SGD is

H∗ = 2
n

N
(BBT)

−1
. (37)

Diagonally Preconditioned Constant SGD The optimal
diagonal preconditioner for constant SGD is

H∗
kk =

2n

N(BBT)kk
. (38)

4.1.2 Bayesian Learning via Stochastic Gradient
Langevin Dynamics

Stochastic Gradient Langevin Dynamics (SGLD) describes
another approach for Bayesian learning on large scale
datasets using smaller minibatches of data. It was first pro-
posed in [10]. The algorithm is again similar to the conven-
tional SGD algorithm, but this time random noise is injected
into the parameter updates of the optimization process. This
way, the parameters will again converge to their posterior
distribution rather than just their maximum likelihood esti-
mate.

SGLD thus offers a surprisingly simple solution that
combines the best of both worlds, only relying on stochastic
instead of exact gradients, but nevertheless sampling from
the posterior distribution of the weights. Its biggest advan-
tage is that it transitions from stochastic optimization to pos-
terior sampling seamlessly.

The SGLD Algorithm The central idea of the SGLD
algorithm is to combine stochastic gradient descent with
Langevin dynamics.

Langevin dynamics is an approach to modeling a dynam-
ical system by simplifying the model and accounting for
omitted degrees of freedom by using stochastic differential
equations.

The combination of the two concepts is implemented in
a straightforward way, by simply adding random Gaussian
noise to the stochastic gradients. The added noise is bal-
anced with the current step size, which asymptotically goes
to zero.

The proposed update for the parameters to be optimized
is then

∆θt = −
ϵt
2
∇L̃(θ) + ηt, (39)

where ηt ∼ N (0, ϵt) is the random Gaussian noise balanced
by the current step size ϵt. It is essential for the step size to
decrease to zero at rates satisfying

∞∑
t=1

ϵt =∞ and

∞∑
t=1

ϵ2t <∞. (40)

8

There are two sources of stochasticity in Eq. (39):

1. The noise in the stochastic gradient with variance
(ϵt2)

2V[θt] and

2. the injected Gaussian noise ηt with variance ϵt.

In the initial phase of running this algorithm, the stochastic
gradient noise dominates and the algorithm thus imitates the
efficient SGD algorithm. However, in the later phase, as
ϵt → 0, the injected noise dominates and the algorithm thus
imitates Langevin dynamics. SGLD transitions smoothly
between the two phases.

Sampling from the Posterior When using this algorithm
to produce samples from the posterior distribution, it is im-
portant to only start collecting samples after it has entered
the posterior sampling phase. This only happens when it
imitates Langevin dynamics.

Performance The SGLD algorithm provides a simple
way to perform Bayesian learning, even on large datasets.
Nevertheless, it also outperforms the conventional SGD al-
gorithm on the task of MNIST classification, as can be seen
in Fig. 3.

4.2. Stochastic Dynamics Variants of HMC

This section presents stochastic variations of the previ-
ously defined HMC algorithm. Stochastic dynamics forms
the underlying framework for describing and analyzing
these variations.

In Sec. 4.2.1, another way of changing the value of
the Hamiltonian inside the HMC algorithm is outlined.
Sec. 4.2.2 presents the stochastic dynamics perspective on a
special case of the HMC algorithm, called Langevin Monte
Carlo.

As mentioned before, the HMC algorithm requires gra-
dient computations over the whole dataset. This limitation
makes its exact application infeasible for practical use on
large datasets. To alleviate this problem, stochastic variants
can be defined. One such variant, called Stochastic Gradi-
ent Hamiltonian Monte Carlo is presented in Sec. 4.2.3.

4.2.1 A Simple Stochastic Dynamics Variant of HMC

The leapfrog iterations of the HMC algorithm keep H ap-
proximately constant. In order to create a Markov chain that
converges to the desired joint distribution from Eq. (28), it is
thus necessary to interleave them with steps that can change
H . It is convenient for these changes to only affect p, since
it enters into H in a simple way.

The previously presented way of doing this is sampling a
new momentum vector in each iteration of the MCMC algo-
rithm. Another possible approach to changing the momen-
tum variables p is inspired by stochastic dynamics and was

originally proposed in [1]. The idea is to perform stochastic
steps of the form

p′ = αp+ (1− α2)
1
2 r, (41)

where 0 ≤ α < 1 and r is a random vector with independent
Gaussian components: r ∼ N (0, I). These stochastic steps
leave the joint distribution invariant. Using a value of α
close to one is best, as this reduces the random walk aspect.

4.2.2 Langevin Monte Carlo

Langevin Monte Carlo (LMC) is a special case of the HMC
algorithm, in which only a single leapfrog step is performed
per iteration, i.e. L = 1.This variant is thus described by the
steps

1. Sample momentum variables p ∼ N (0, I).

2. Generate proposed values q∗ and p∗:

q∗i = qi −
ϵ2

2

∂U

∂qi
(q) + ϵpi (42)

p∗i = pi −
ϵ

2

∂U

∂qi
(q)− ϵ

2

∂U

∂qi
(q∗). (43)

The proposed state (q∗, p∗) is then accepted as the new state
with probability

min[1, exp(−(U(q∗)−U(q))− 1

2

∑
i

((p∗i)
2−p2i))]. (44)

The name Langevin Monte Carlo arises because Eq. (42) is
a Langevin equation.

4.2.3 Stochastic Gradient Hamiltonian Monte Carlo

Hamiltonian Monte Carlo methods are limited by the re-
quired gradient computation for the simulation of the
Hamiltonian dynamical system. These gradient computa-
tions are often infeasible since they utilize the entire dataset.
Replacing the exact gradient with a stochastic gradient can
alleviate this problem and hence enable the application of
HMC to bigger datasets. This method marries the efficien-
cies in state space exploration of HMC with the computa-
tional efficiencies of stochastic gradients. It was first pro-
posed in [3].

Naı̈ve Stochastic Gradient HMC The naı̈ve approach to
obtaining a stochastic version of the HMC algorithm is to
simply replace ∇U(q) in Eq. (17) with its stochastic ap-
proximation ∇Ũ(q). This introduces noise in the momen-
tum update, which according to Eq. (31) becomes

dp

dt
= −∇Ũ(q) ≈ −∇U(q) +N (0,V[q]). (45)

9

The corresponding hockey puck analogy consists of the
same scenario, the puck on a frictionless surface of varying
height, but this time with a random wind blowing as well.

However, as shown in [3], this naı̈ve approach no longer
leads to Hamiltonian dynamics encapsulating the desired
target distribution. Thus, HMC with stochastic gradients re-
quires a frequent Metropolis-Hastings correction step, or al-
ternatively, long simulation runs with low acceptance prob-
abilities. This finding can be seen in Fig. 2.

Stochastic Gradient HMC with Friction The solution
to this problem consists of introducing an additional fric-
tion term to the momentum update of the naı̈ve method.
This modified method is called Stochastic Gradient HMC
(SGHMC). The resulting second-order Langevin dynamics
maintains the desired target distribution as the stationary
distribution.

The update equation with added friction term is given as:

dp

dt
= −∇Ũ(q)− 1

2
V[q]p+N (0,V[q]). (46)

Here, 1
2V[q]p is the friction term.

The corresponding hockey puck analogy this time is to
imagine street hockey instead of ice hockey, which intro-
duces friction from the asphalt. There’s still a random wind
blowing, but the friction of the surface prevents the puck
from running far away.

This type of dynamical system is called second-order
Langevin dynamics. In comparison, the Langevin dynamics
found in SGLD (Sec. 4.1.2) and LMC (Sec. 4.2.2) are both
first-order.

Note that when the additional stochastic noise is re-
moved, SGHMC reduces to a stochastic gradient method
with momentum.

Performance While the results obtained from naı̈ve
stochastic gradient HMC diverge significantly from the tar-
get distribution unless a Metropolis-Hastings correction is
added (see Fig. 2), the final results of the sampling based
methods improve upon optimization-based methods, show-
ing an advantage of Bayesian inference on the task of
MNIST classification, as can be seen in Fig. 3.

5. Summary

Bayesian deep learning was introduced and contrasted
against conventional frequentist deep learning. The con-
cept of a Bayesian neural network was introduced and the
Bayes by Backprop algorithm for training such networks us-
ing a variational approach was explained. A short analysis
of the performance achieved by Bayesian neural networks
was presented, hinting that Bayesian neural networks offer a

Figure 2. Empirical Distributions of Different Sampling Al-
gorithms: It can be seen that the naı̈ve stochastic gradient HMC
algorithm without MH corrections no longer samples from the true
target distribution. Figure taken from [3].

Figure 3. Test Error on MNIST Classification: Sampling based
methods (SGLD, SGHMC) outperform optimization-based meth-
ods (SGD, SGD with momentum) on MNIST classification. The
SGHMC algorithm also outperforms SGD, SGD with momentum
and SGLD. Figure taken from [3].

promising way of tackling overfitting, incorporating uncer-
tainty into predictions and reducing model size at runtime.

Markov Chain Monte Carlo (MCMC) methods were in-
troduced as a way to sample from complex probability dis-
tributions and thus enable Bayesian inference for neural
networks. Furthermore, Hamiltonian dynamics was moti-
vated and introduced. The concepts of MCMC methods
and Hamiltonian dynamics were then combined, to intro-
duce a special type of MCMC method, called the Hamilto-
nian Monte Carlo (HMC) algorithm. It was shown how to
formulate and simulate Hamiltonian dynamics for the HMC
algorithm and also how to utilize the HMC algorithm for
Bayesian deep learning.

10

Stochastic dynamics was introduced as a way to ap-
proach Bayesian deep learning by introducing stochasticity
into the optimization process of conventional deep learn-
ing. Additionally, multiple stochastic variations of the
HMC algorithm based on stochastic dynamics as an under-
lying framework were presented and their performance was
briefly compared.

References
[1] Hans C Andersen. Molecular dynamics simulations at con-

stant pressure and/or temperature. The Journal of chemical
physics, 72(4):2384–2393, 1980. 7, 9

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural networks.
In International Conference on Machine Learning, pages
1613–1622. PMLR, 2015. 1, 2, 3, 4

[3] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic
gradient hamiltonian monte carlo. In International Confer-
ence on Machine Learning, pages 1683–1691. PMLR, 2014.
7, 9, 10

[4] Dheeru Dua and Casey Graff. UCI machine learning reposi-
tory, 2017.

[5] AD Kennedy. The theory of hybrid stochastic algorithms. In
Probabilistic methods in quantum field theory and quantum
gravity, pages 209–223. Springer, 1990. 7

[6] Stephan Mandt, Matthew D Hoffman, and David M Blei.
Stochastic gradient descent as approximate bayesian infer-
ence. arXiv preprint arXiv:1704.04289, 2017. 7, 8

[7] Radford Neal. Bayesian learning via stochastic dynam-
ics. Advances in Neural Information Processing Systems,
5, 1992. 1, 4

[8] Radford M Neal et al. MCMC using hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, 2(11):2, 2011. 4

[9] George E Uhlenbeck and Leonard S Ornstein. On the theory
of the brownian motion. Physical review, 36(5):823, 1930. 8

[10] Max Welling and Yee W Teh. Bayesian learning via stochas-
tic gradient langevin dynamics. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11),
pages 681–688, 2011. 7, 8

11

	. Introduction
	. Bayesian Deep Learning
	. Frequentist and Bayesian Deep Learning
	. Bayes by Backprop
	Performance of Bayesian Neural Networks

	. Hamiltonian Monte Carlo
	. Markov Chain Monte Carlo Methods
	. Hamiltonian Dynamics
	Hamilton's Equations
	Discretization of Hamiltonian Dynamics

	. MCMC from Hamiltonian Dynamics
	Canonical Distributions
	Energy Formulation of Bayesian Learning
	Simulating Hamiltonian Dynamics for Bayesian Learning
	The Hamiltonian Monte Carlo Algorithm

	. Stochastic Dynamics
	. Stochastic Dynamics in Bayesian Learning
	Stochastic Gradient Descent as Approximate Bayesian Inference
	Bayesian Learning via Stochastic Gradient Langevin Dynamics

	. Stochastic Dynamics Variants of HMC
	A Simple Stochastic Dynamics Variant of HMC
	Langevin Monte Carlo
	Stochastic Gradient Hamiltonian Monte Carlo

	. Summary

