Graph Theory Review

Niklas Bühler

Winterterm 2019/20

Contents

Basic notions	3
Matchings	5
Connectivity	6
Planarity	7
Colorings	10
Flows	13
Substructures in dense graphs	13
Substructures in sparse graphs	14
Ramsey theory	15
Hamiltonian Cycles	16
Random graphs	17
	Basic notions Matchings Connectivity Planarity Colorings Flows Substructures in dense graphs Substructures in sparse graphs Ramsey theory Hamiltonian Cycles Random graphs

Preface

This is a summary of the most important definitions, theorems and proofs for the Graph Theory lecture at KIT. It is based on a short review done by Prof. Axenovich at the end of winter term 2019/20, which was based on her lecture notes, which themselves are based on the book Graph Theory¹. I added a short sketch to most proofs in order to make memorizing it easier.

¹Reinhard Diestel. *Graph theory.* Fifth edition. Graduate texts in mathematics ; 173. Berlin; [Heidelberg]: Springer, [2017]. ISBN: 9783662536216; 3662536218.

1 Basic notions

Some common proof techniques

- 1. Induction
- 2. Extremal principle with contradiction: Consider a longest path/largest matching/...
- 3. Counting arguments: Double counting, Pigeonhole principle, Parity arguments
- 4. Algorithmic, iterative approach: Just do it!
- 5. Ramsey: Either the red coloring has a structure we want or if not then that implies some structural information in the blue coloring.
- Probabilistic method: P(∪ Bad event) < 1, therefore some object with good properties exists. Compute EX, using linearity of E. Alterations: random object has some unwanted structure, simply destroy it by removing an edge, etc.
- 7. Apply a theorem!

Theorem 1 (Tree equivalence theorem). The following statements are equivalent:

- 1. G is a tree, i.e. connected and acyclic.
- 2. G is minimally connected.
- 3. G is maximally acyclic.
- 4. G is 1-degenerate.
- 5. G is connected and |E| = |V| 1.
- 6. G is acyclic and |E| = |V| 1.
- 7. G is connected and every non-trivial subgraph has a vertex $v: d(v) \leq 1$.
- 8. Any two vertices of G are joined by a unique path.

Remark 2 (Characterization of bipartite graphs). G is bipartite \iff G has no odd cycle.

Proof. As G is bipartite, every cycle has to be even. Consider a partitioning into sets A and B by distances to a vertex v modulo 2. Then, for every edge ab look at shortest a-v-path and b-v-path and show that a and b can't be in the same partition.

Assume $G = A \cup B$ bipartite. Then any cycle has the form $a_1, b_1, a_2, b_2, \ldots, a_k, b_k, a_1$, so even length.

Assume G has no cycles of odd length and is connected, otherwise treat components separately.

Let $v \in V$, $A = \{u \in V | \operatorname{dist}(u, v) \equiv 0 \pmod{2}\}, B = \{u \in V | \operatorname{dist}(u, v) \equiv 1 \pmod{2}\}.$

A and B are independent sets: Let $u_1u_2 \in E, P_1$ a shortest $u_1 - v$ -path, P_2 a shortest $u_2 - v$ -path. Then $W := P_1 \cup P_2 \cup \{u_1u_2\}$ is a closed walk. If $u_1, u_2 \in A$ or $u_1, u_2 \in B$, then W is a closed odd walk, thus G contains an odd cycle, a contradiction. Thus, $\forall u_1u_2, u_1$ and u_2 are in different parts A or B.

Definition 3. An Euler tour is a walk that visits every edge exactly once.

Theorem 4 (Euler tours). A connected graph has an Euler tour \iff every vertex has even degree.

Proof. Use extremal principle with contradiction: Consider a longest walk W with non-repeating edges. Then show that it has to be closed and contain all edges, otherwise W was not maximal.

A connected graph has an Euler tour \iff every vertex has even degree. Assume G is connected and has an Euler tour. Then by definition of the tour, there is an even number of edges incident to each vertex.

Assume G is connected with all vertices of even degree. Consider a walk $W := v_0, e_0, \ldots, v_k$ with non-repeated edges and having largest possible number of edges.

First, W has to be a closed walk: If $v_0 \neq v_k$, v_0 is incident to an odd number of edges in W, a contradiction to W's maximality.

Also, W contains all the edges of G: Otherwise, by G's connectivity, there is an edge $e = v_i x$ of G that is incident to v_i and not contained in W. Then the walk $x, e, v_i, e_i, v_{i+1}, \ldots, v_k, e_0, v_1, e_1, \ldots, v_i$ is longer than W, a contradiction. Therefore, W is a closed walk containing all edges of G, an Euler tour. \Box

2 Matchings

Theorem 5 (Hall's marriage theorem). *G* bipartite with sets *A*, *B*. G has a matching saturating $A \iff |N(S)| \ge |S| \forall S \subseteq A$.

Proof. Do induction on |A|. Consider two cases: Case 1: $|N(S)| \ge |S|+1 \ \forall S \subsetneq A$: Simply take out one edge and it's vertices, get a matching by induction hypothesis and add the edge to that matching. Case 2: $\exists A' \ne \emptyset$, such that |N(A')| = |A'|: Consider $G' := G[A' \cup N(A')]$. Again, get a matching by induction hypothesis and combine that with a matching in G - G', also by induction hypothesis.

Induction on |A|: For |A| = 1, the assertion is true. Let $|A| \ge 2$:

Case 1. $|N(S)| \ge |S| + 1 \forall S \subsetneq A$. Pick an edge $ab \ (a \in A, b \in B)$ and consider $G' := G - \{a, b\}$. Every set $\emptyset \neq S \subseteq A \setminus \{a\}$ satisfies

$$|N_{G'}(S)| \ge |N_G(S)| - 1 \ge |S|,$$

so by induction hypothesis G' contains a matching of $A \setminus \{a\}$, so together with the edge ab, this is a matching of A.

Case 2. $\exists A' \neq \emptyset$ with B' := N(A') and |B'| = |A'|. By induction hypothesis, $G' := G[A' \cup B']$ contains a matching of A'. But G - G' also satisfies the marriage condition: $\forall S \subseteq A \setminus A'$ with $|N_{G-G'}(S)| < |S|$ we would have $|N_G(S \cup A')| < |S \cup A'|$, contrary to our assumption. Again, by induction, G - G' contains a matching of $A \setminus A'$. These two matchings result in a matching saturating A.

Theorem 6 (Kőnig's theorem). If G is bipartite, then the size of a largest matching is the same as the size of a smallest vertex cover.

Proof. A vertex cover contains at least one vertex of every edge of a matching, so $m \leq c$. Define $U' = \{b : an alternating path ends in b\}$ and $U = U' \cup \{a : ab \in E(M), b \notin U'\}$. U is a vertex cover and |U| = m.

Let $G = A \dot{\cup} B$ and let c be the size of a smallest vertex cover and m the size of a largest matching. Since a vertex cover contains at least one vertex from every matching edge, $c \ge m$. To show $m \ge c$ consider a largest matching M and let

 $U' = \{b : ab \in E(M) \text{ for some } a \in A \text{ and some alternating path ends in } b\},\$

$$U = U' \cup \{a : ab \in E(M), b \notin U'\}.$$

Note that |U| = m. U is a vertex cover, i.e. every edge of G contains a vertex from U: If $ab \in E(M)$, then either a or b is in U. For $ab \notin E(M)$:

Case 0. $a \in U$. Done.

Case 1. *a* is not incident to *M*. Then *ab* is an alternating path. *b* has to be incident to *M*, otherwise $M \cup \{ab\}$ is a larger matching, a contradiction.

Case 2. *a* is incident to *M*. Then $ab' \in M$ for some *b'*. Since $a \notin U, b' \in U$, thus there is an alternating path *P* ending in *b'*. If *P* contains *b*, then $b \in U$, otherwise Pb'ab is an alternating path ending in *b*, so $b \in U$.

Theorem 7 (Tutte's theorem). G has a perfect matching $\iff \forall S \subseteq V$ $q(G-S) \leq |S|$.

For a graph G, q(G) denotes the amount of odd components of G.

3 Connectivity

Theorem 8 (Menger's theorem). The maximum number of A-B-paths in G is equal to the minimum number of vertices separating A from B.

Theorem 9 (Global version of Menger's theorem). *G* is *k*-connected $\iff \forall a, b \in V$ there are *k* independent *a*-*b*-paths.

Theorem 10 (Ear decomposition). G is 2-connected \iff G has an ear decomposition starting from any cycle in G.

Proof. Do induction over a given ear decomposition to show that it is 2connected. For the other implication, take a maximal subgraph obtained by an ear decomposition starting from a cycle C in G and show that it is induced and equal to G, both times contradicting its maximality if not.

Assume there is such an ear decomposition starting from C:

$$C = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_k = G$$

Do induction on i:

 $G_0 = C$ is clearly 2-connected. If G_{i+1} contains a cut-vertex, it must be on the added ear. But deleting a vertex from the ear does not disconnect G_{i+1} since an ear is contained in a cycle.

Assume G is 2-connected and C is a cycle in G. Let H = largest subgraph obtained by ear decomposition starting with C. H is induced subgraph of G, otherwise an edge with two vertices in V(H) is an ear, contradicting H's maximality.

Assume $H \neq G$. As G is connected, there is an edge $e = uv, u \in V(H), v \notin V(H)$. Since G - u is connected, consider a v - w-path P in G - u for some $w \in V(H) - u$. Let w' be the first vertex from V(H) - u on P. Then $Pw' \cup uv$ is an ear of H, contradicting its maximality. \Box

Definition 11 (Block). A maximal connected subgraph of G without a cut vertex is called a *block* of G.

Remark 12 (Blocks). *B* is a block of $G \iff B$ is a bridge or a maximal 2-connected subgraph of G.

4 Planarity

Theorem 13 (Euler's formula).

$$n - m + f = 2,$$

where n = |G|, m = ||G|| = |E(G)| and f is the number of faces of G.

Proof. Fix n and do induction on m. If $m \le n - 1$, the graph is a tree. Otherwise, consider G' := G - e for an edge e that is contained in a cycle. Note that e lies on the boundary of exactly two faces. Remove e and apply induction hypothesis.

Fix n and do induction on m.

For $m \le n-1$, G is a tree and because m = n-1, we have n - (n-1) + f = 1 + 1 = 2.

So let $m \ge n$. Then G has an edge e in a cycle.

Let G' := G - e. Then e lies on the boundary of exactly two faces, f_1, f_2 . One can show that $F(G') = F(G) - \{f_1, f_2\} \cup \{f'\}$, where $f' = f_1 \cup f_2 \setminus e$. Let n', m', f' be the number of vertices, edges and faces in G'. Then we see that n = n', m = m' + 1, f = f' + 1. So, n - m + f = n' - m' + f' = 2. \Box

Definition 14 (Minor). X is a *minor* of G ($X \leq G, MX \subseteq G$), if X can be obtained from G by successive vertex deletions, edge deletions and edge contractions.

Definition 15 (Topological minor). *G* is a single-edge subdivision of *X*, if $V(G) = V(X) \cup \{v\}$ and E(G) = E(X) - xy + xv + vy for $xy \in E(X)$ and $v \notin V(X)$.

G is a *subdivision* of X, if it can be obtained from X by a series of single-edge subdivisions.

X is a topological minor of G ($TX \subseteq G$), if a subgraph of G is a subdivision of X.

Theorem 16 (Kuratowski's theorem). *G* is planar $\iff G \not\supseteq TK_5, TK_{3,3} \iff G \not\supseteq MK_5, MK_{3,3}.$

Definition 17 (Dual graph). The dual graph of a plane graph G has a vertex for every face of G. It has an edge, wherever two faces of G are separated by an edge (loops if the same face appears on both sides of an edge).

Theorem 18 (5-Color theorem). $\forall G$ planar: $\chi(G) \leq 5$.

Proof. Do induction on |G|. Assume |G| > 5 and G maximally planar, i.e. plane triangulation. Then by Euler's formula $\exists v : d(v) \leq 5$.

By induction there is a coloring c of G - v using 5 colors. Assume c assigns 5 colors to $N(v) = \{v_1, \ldots, v_5\}$, in clockwise order, and $c(v_i) = i$.

If v_1, v_3 or v_2, v_4 are not linked by paths of colors only 1 and 3 or only 2 and 4, then v_1 can be colored in 3 or v_2 can be colored in 4. So assume there is a v_1 - v_3 -path only colored 1 and 3 and a v_2 - v_4 -path only colored 2 and 4. But then these paths must cross, a contradiction to the planarity of G.

Do induction on |G|.

If $|V(G)| \leq 5$, the result is trivial.

Assume |G| > 5 and G is maximally planar, i.e. has a plane embedding that is a triangulation. Then by Euler's formula $\exists v : d(v) \leq 5$.

By induction there is a coloring c of G - v using 5 colors. Assume c assigns 5 colors to $N(v) = \{v_1, \ldots, v_5\}$, in clockwise order, and $c(v_i) = i$.

Consider a subgraph induced by all vertices colored 1 or 3:

 v_1 and v_3 are in different components of that subgraph, we can switch colors 1 and 3 in the component of v_1 and color v in 1. So assume v_1 and v_3 are in the same component and there is a path connecting them, colored in 1 and 3 only.

Now consider a subgraph induced by all vertices colored 2 or 4:

If v_2 and v_4 are in different components of that subgraph, we can switch colors 2 and 4 in the component of v_2 and color v in 2. So assume not, then there is a path connecting them, colored in 2 and 4 only.

But this means, these two paths cross each other, contradicting the planarity of G.

Theorem 19 (5-List-Color theorem). $\forall G$ planar: $\chi_l(G) \leq 5$.

Proof. Prove a stronger statement:

Let G be an outer triangulation (max. planar) with two adjacent vertices x, y on the other triangle. Let $L: V(G) \to 2^{\mathbb{N}}$ be a list assignment, such that $|L(x)| = |L(y)| = 1, L(x) \neq L(y), |L(z)| = 3$ for any other vertex z on the outer face and |L(z)| = 5 for every vertex not on the bounded face. Then G is L-colorable.

Do induction on |G| with an obvious basis for |G| = 3. Consider an outer triangulation G on more than 3 vertices.

Case 1. There is a chord uv. Let $G = G_1 \cup G_2$, such that $\{u, v\} = V(G_1) \cap V(G_2), |G| > |G_i| \ge 3, G_i$ is an outer triangulation. W.l.o.g. x, y are on the outer face of G_1 . Apply induction to G_1 and obtain a proper L-coloring c' of G_1 . Then apply induction on G_2 with u, v taking the roles of x, y and list assignments L' such that $L'(u) = \{c'(u)\}, L'(v) = \{c'(v)\}, L'(z) = L(z)$ for $z \notin \{x, y\}$. Then there is a proper L'-coloring c'' of G_2 . These colorings coincide on u and v, so together they form a proper coloring c of G, i.e. c(v) = c'(v) for $v \in V(G_1)$ and c(v) = c''(v) for $v \in V(G_2)$.

Case 2. There is no chord.

Let z be a neighbor of x on the boundary of the outer face, $z \neq y$. Let Z be the set of neighbors of z not on the outer face. Let $L(x) = \{a\}, L(y) = \{b\}$. Let $c, d \in L(z)$ such that $c \neq a$ and $d \neq a$. Let G' = G - z. Finally, let L' be the list assignment for V(G') such that $L'(v) = L(v) - \{c, d\}$ for $v \in Z$ and L'(v) = L(v) for $v \notin Z$.

By induction, G' has a proper L'-coloring c'. Extend c' to a coloring c of G: Let c(v) = c'(v) if $v \neq z$. Let $c(z) \in \{c, d\} \setminus \{c'(q)\}$ where q is the neighbor of z on the outer face, $q \neq x$. z then has a color different from each of its neighbors, so c is a proper L-coloring.

5 Colorings

Theorem 20 (Brook's theorem). Let G be a connected graph. Then $\chi(G) \leq \Delta(G)$, unless G is a complete graph or an odd cycle.

Proof. Do induction on n. If G has a cut-vertex v, apply induction on $G_1 \cup G_2 = G$, where $\{v\} = V(G_1) \cap V(G_2)$, $|G_1|, |G_2| < |G|$. This gives $\chi(G_i) \leq \Delta(G)$ and the colors can be permutated so that v has the same color in both colorings, resulting in a combined coloring of G.

If G has no cut-vertex and $\Delta(G) \ge 3$, then G is 2-connected. **Case 1.** $\exists v : d(v) \le \Delta - 1$.

Order the vertices v_i, \ldots, v_n , such that $v = v_n$ and each v_i has a neighbor with larger index and color G greedily. At step i, there are at most $\Delta - 1$ neighbors of v_i colored, so there is an available color for v_i . **Case 2.** $\forall v : d(v) = \Delta$.

Consider $x, y, z \in V$, s.t. $xy \notin E$, $xv, yv \in E$ and $G - \{x, y\}$ is connected. Order the vertices v_i, \ldots, v_n , such that $x = v_1, y = v_2, v = v_n$ and each v_i has a neighbor with larger index and color G greedily. x and y get the same color and as in the first case, v_i can be colored. v_n has Δ colored neighbors, but c(x) = c(y).

Induction on n. Assume |G| > 3.

If G has a cut-vertex v, apply induction on G_1, G_2 , s.t. $G = G_1 \cup G_2$ and $V(G_1) \cap V(G_2) = \{v\}$ and $|G_1| < |G|$ and $|G_2| < G$.

If each of G_1, G_2 is not complete or an odd cycle, then $\chi(G_i) \leq \Delta(G_i) \leq \Delta(G)$.

If G_i is complete or an odd cycle, $\Delta(G_i) < \Delta(G)$ and $\chi(G_i) = \Delta(G_i) + 1 \le \Delta(G)$. By making sure that the color of v is the same in an optimal proper coloring of G_1 and G_2 we see that $\chi(G) \le \Delta(G)$.

Note also that if $\Delta(G) \leq 2$, the theorem holds trivially, so we assume $\Delta(G) \geq 3$. Then G is 2-connected.

Case 1. $\exists v : d(v) \leq \Delta - 1.$

Order the vertices of G v_1, \ldots, v_n , such that $v = v_n$ and each v_i has a neighbor with larger index. Color G greedily in this ordering.

At step *i*, there are at most $\Delta - 1$ neighbors of v_i colored, so there is an available color for v_i .

Case 2. $\forall v : d(v) = \Delta$.

Consider vertices x, y, z, s.t. $xy \notin E$ and $xv, yv \in E$ and $G - \{x, y\}$ is connected. Order the vertices of $G v_1, \ldots, v_n$, such that $x = v_1, y = v_2$, $v = v_n$ and each v_i $(3 \le i < n)$ has a neighbor with larger index. Color G greedily in this ordering.

 v_1 and v_2 get the same color and as in the previous case, v_i has at most $\Delta - 1$ colored neighbors $(3 \le i < n)$, so it can be colored in the remaining color. At the last step, v_n has Δ colored neighbors, but two of them, v_1, v_2 have the same color, so there are at most $\Delta = 1$ colors used by neighbors of v_n . Thus v_n can be colored in the remaining color. \Box

Lemma 21 (Greedy coloring). $\chi(G) \leq \Delta(G) + 1$

Proof. For any connected graph G and any vertex v there is an ordering of the vertices of G: v_1, \ldots, v_n , such that $v = v_n$ and $\forall 1 \leq i < n v_i$ has a higher indexed neighbor:

Consider a spanning tree T of G and create a sequence of sets X_1, \ldots, X_{n-1} with $X_1 = V, X_i = X_{i-1} - \{v_{i-1}\}$, where v_i is a leaf of $T[X_i]$ not equal to v. Then v_1, \ldots, v_n is a desired ordering.

Lemma 22 (Clique number and chromatic number). $\omega(G) \leq \chi(G)$.

Definition 23 (Perfect graphs). *G* is perfect $\iff \omega(H) = \chi(H) \forall H \subseteq G$, induced.

Theorem 24 (Weak perfect graph theorem). G is perfect $\iff \overline{G}$ is perfect.

Theorem 25 (Strong perfect graph theorem). G is perfect \iff G has no odd hole (odd cycle on at least 5 vertices) or antihole (complement of an odd hole) as induced subgraph.

Theorem 26 (Vizing's theorem). $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$

Theorem 27 (Kőnig's theorem). If G is bipartite, then $\chi'(G) = \Delta(G)$.

Proof. $\chi'(G) \geq \Delta(G)$, because the edges incident to a vertex of maximum degree require distinct colors.

For $\chi'(G) \leq \Delta(G)$ do induction on ||G||, with trivial base. Let $e = yt \in E$, then by induction c is a proper edge coloring of G' = G - e using colors from $\{1, \ldots, \Delta(G)\}$. As $d_{G'}(x), d_{G'}(y) \leq \Delta(G) - 1$, there are color sets $\emptyset \neq Mis(x), Mis(y) \subseteq [\Delta(G)]$, s.t. no edge incident to v uses colors from Mis(v). Consider two cases:

Case 1: $Mis(x) \cap Mis(y) \neq \emptyset$: Let $c(e) \in Mis(x) \cap Mis(y)$.

Case 2: $Mis(x) \cap Mis(y) = \emptyset$: Let $\alpha \in Mis(x), \beta \in Mis(y)$. Consider a longest path P colored α and β starting at x. y is not a vertex in P, as it is not incident to β , and not the other endpoint of P because of parity. Switch colors α and β on P. Then we obtain a proper edge-coloring in which $\beta \in Mis(x) \cup Mis(y)$, which allows e to be colored β .

 $\chi'(G) \geq \Delta(G)$, because the edges incident to a vertex of maximum degree require distinct colors.

For the upper bound, $\chi'(G) \leq \Delta(G)+1$, do induction on ||G||. Base ||G|| = 1 is trivial. Let G be a graph, ||G|| > 1, assume that the assertion holds for all graphs with less edges.

Let $e = yt \in E$. By induction there is a proper edge coloring c of G' = G - eusing colors from $\{1, \ldots, \Delta(G)\}$. In G' both x and y are incident to at most $\Delta(G) - 1$ edges. Thus there are color sets $\emptyset \neq \operatorname{Mis}(x), \operatorname{Mis}(y) \subseteq [\Delta(G)]$, where $\operatorname{Mis}(v)$ is the set of "missing" colors, i.e. colors not used on edges incident to v.

Case 1. $\operatorname{Mis}(x) \cap \operatorname{Mis}(y) \neq \emptyset$: Let $\alpha \in \operatorname{Mis}(x) \cap \operatorname{Mis}(y)$, color *e* with α . This gives $\chi'(G) \leq \Delta(G)$.

Case 2. $\operatorname{Mis}(x) \cap \operatorname{Mis}(y) = \emptyset$: Let $\alpha \in \operatorname{Mis}(x)$ and $\beta \in \operatorname{Mis}(y)$. Consider a longest path P colored α and β starting at x. Because of parity, P does not end in y, and because y is not incident to β , y is not a vertex on P. Switch colors α and β on P. Then we obtain a proper edge-coloring in which $\beta \in \operatorname{Mis}(x) \cup \operatorname{Mis}(y)$, which allows e to be colored β . Thus $\chi'(G) \leq \Delta(G)$. \Box

Definition 28 (List-colorable, List-chromatic-number). Let $L(v) \subseteq \mathbb{N}$ be a list of colors for each vertex $v \in V$.

G is L-list-colorable if there is a coloring $c: V \to \mathbb{N}$ such that $c(v) \in L(v)$ $\forall v \in V$ and adjacent vertices have different colors.

G is k-list-colorable, if G is L-list-colorable for every L with L(v) = k for every $v \in V$.

 $\chi_l(G)$ is the smallest k such that G is k-list-colorable.

6 Flows

Theorem 29 (Ford-Fulkerson theorem). Let N = (G, s, t, c) be a network. Then

 $\max\{|f|: f \text{ is an N-flow}\} = \min\{c(S,\overline{S}): (S,\overline{S}) \text{ is a cut}\}.$

Also, there is an integral flow $f: T \to \mathbb{Z}_{\geq 0}$ with this maximum flow value.

7 Substructures in dense graphs

Definition 30. Extremal number The extremal number ex(n, H) is defined as $max\{||G|| : |G| = n, G \not\supseteq H\}$.

 $EX(n, H) := \{G : ||G|| = ex(n, H), |G| = n, G \not\supseteq H\}$ is the set of *H*-free graphs on *n* vertices with ex(n, H) edges.

Definition 31 (Turán graph). The Turán graph T(n, r) is the unique complete r-partite graph of order n whose partite sets differ by at most 1 in size. It does not contain K_{r+1} .

Notation: t(n,r) = ||T(n,r)||. If n = r * s, T(n,r) is also denoted by K_r^s .

Theorem 32 (Turán's theorem). Any graph G with n vertices, $ex(n, K_r)$ edges and $K_r \not\subseteq G$ is a $T_{r-1}(n)$. In other words, $EX(n, K_r) = \{T(n, r-1)\}.$

Remark 33 (Binomial coefficient).

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Theorem 34 (Erdős-Stone-Simonovits). For any graph H and for any fixed $\epsilon > 0$, there is n_0 such that for any $n \ge n_0$,

$$\left(1 - \frac{1}{\chi(H) - 1} - \epsilon\right) \binom{n}{2} \le \exp(n, H) \le \left(1 - \frac{1}{\chi(H) - 1} + \epsilon\right) \binom{n}{2}.$$

Definition 35 (ϵ -regularity). Let ||X, Y|| denote the number of edges between X and Y. Then the *density* d(X, Y) between X, Y is defined as $d(X, Y) = \frac{||X, Y||}{|X||Y|}$.

For $\epsilon > 0$, the pair (X, Y) is ϵ -regular, if $|d(X, Y) - d(A, B)| \leq \epsilon$ for all $A \subseteq X, B \subseteq Y$ with $|A| \geq \epsilon |X|$ and $|B| \geq \epsilon |Y|$.

An ϵ -regular partition of G is a partition $V = V_0 \dot{\cup} \dots \dot{\cup} V_k$ such that:

- 1. $|V_0| \leq \epsilon |V|,$
- 2. $|V_1| = |V_2| = \cdots = |V_k|,$
- 3. All but at most ϵk^2 of the pairs (V_i, V_j) are ϵ -regular.

8 Substructures in sparse graphs

Conjecture 36 (Hadwiger's conjecture). $\chi(H) = r \Rightarrow H \supseteq MK_r$

9 Ramsey theory

Definition 37 (Ramsey number). The Ramsey number R(k) is the smallest $n \in \mathbb{N}$, such that every 2-edge-coloring of K_n contains a monochromatic K_k .

The asymetric Ramsey number R(k, l) is the smallest $n \in \mathbb{N}$, such that every red-blue edge-coloring of K_n contains a red K_k or a blue K_l .

The graph Ramsey number R(G, H) is the smallest $n \in \mathbb{N}$, such that every red-blue edge-coloring of K_n contains a red G or a blue H.

The hypergraph Ramsey number $R_r(l_1, \ldots, l_k)$ is the smallest $n \in \mathbb{N}$, such that for every k-coloring of $\binom{[n]}{r}$, there is an $i \in [k]$ and a $V \subseteq [n]$ with $|V| = l_i$, such that all sets in $\binom{V}{r}$ have color *i*.

Remark 38 (On proving graph Ramsey numbers). For the lower bound, construct a coloring that doesn't contain the red or blue subgraph. For the upper bound, given a coloring, show that either the blue or the red subgraph can be found.

Theorem 39 (Ramsey). For any $k \in \mathbb{R}$ we have $\sqrt{2}^k \leq R(k) \leq 4^k$.

Proof. For the lower bound, use the probabilistic method, by constructing a coloring of $K_{2^{k/2}}$. Then show that the probability of a monochromatic k-clique is less than 1.

For the upper bound, consider an edge-coloring of $G = K_{4^k}$ in red and blue. Let x_1 be an arbitrary vertex and $X_1 = V$. Then let X_{i+1} be the largest monochromatic neighborhood of x_i in X_i and call its color c_i . Then let x_{i+1} an arbitrary vertex of X_{i+1} . Note that $|X_{i+1}| \ge \lceil \frac{|X_i-1|}{2} \rceil \ge 4^k/2^i$. Thus $|X_i| > 0$ as long as $i \le 2k$. Of c_1, \ldots, c_{2k-1} , at least k are the same by pigeonhole principle. The vertices belonging to that color induce a monochromatic k-vertex clique.

For the upper bound, consider an edge-coloring of $G = K_{4^k}$ in red and blue. Construct a sequence of vertices x_1, \ldots, x_{2k} , a sequence of vertex sets X_1, \ldots, X_{2k} and a sequence of colors c_1, \ldots, c_{2k-1} as follows:

Let x_1 be an arbitrary vertex and $X_1 = V(G)$.

Let X_{i+1} be the largest monochromatic neighborhood of x_i in X_i , call this

color c_i . Let x_{i+1} be an arbitrary vertex in X_{i+1} .

We see that $|X_{i+1}| \ge \lceil \frac{|X_i-1|}{2} \rceil \ge 4^k/2^i$. Thus $|X_i| > 0$ as long as 2k > (i-1), i.e. as long as $i \le 2k$. Consider vertices x_1, \ldots, x_{2k} and colors c_1, \ldots, c_{2k-1} . At least k of these colors, say c_{i1}, \ldots, c_{ik} are the same by pigeonhole principle, say red. Then x_{i1}, \ldots, x_{ik} induce a k-vertex clique with all edges being red.

For the lower bound, construct a coloring of K_n , $n = 2^{k/2}$ with no monochromatic clique of size k. Color each edge red with probability $\frac{1}{2}$, otherwise blue. Let S be a fixed set of k vertices. Then

 $\operatorname{Prob}(S \text{ induces a red clique}) = 2^{-\binom{k}{2}}.$

So Prob(S induces a monochromatic clique) = $2^{-\binom{k}{2}+1}$. Thus

Prob(\exists monochromatic clique on k vertices) $\leq \binom{n}{k} 2^{-\binom{k}{2}+1}$

$$\leq \frac{n^k}{k!} 2^{-k^2/2 + k/2 + 1} \leq \frac{2^{k/2 + 1}}{k!} < 1.$$

10 Hamiltonian Cycles

Definition 40 (Hamiltonian cycle). A Hamiltonian cycle is a cycle that visits every vertex exactly once.

Theorem 41 (Dirac's theorem). If $|G| =: n \ge 3$ and $\delta(G) \ge n/2$, then G has a Hamiltonian cycle.

Proof. G is connected, as $\delta \ge n/2$. Consider a longest path $P = (v_0, \ldots, v_k)$ and note that $N(v_0), N(v_k) \subseteq V(P)$. Show by pigeonhole principle that there is a cycle C on k + 1 vertices. If k + 1 = n, C is a Hamiltonian cycle. If not, then there is a vertex $v \notin V(C)$ that is adjacent to a vertex of C as G is connected. Then v and C induce a path on k + 2 vertices, contradicting the maximality of P. G is connected, otherwise the smallest component has vertices of degree at most n/2-1, a contradiction.

If $P = (v_0, \ldots, v_k)$ is a longest path, then $N(v_0), N(v_k) \subseteq V(P)$.

There is a cycle C on k + 1 vertices in G: Either by pigeonhole principle $v_0v_k \in E(G)$, as $|N(v_0)|, |N(v_k)| \ge n/2$ and $k \le n - 1$, or $\exists i$ such that $v_0v_{i+1}, v_iv_k \in E(G)$.

If k + 1 = n, C is a Hamiltonian cycle and we are done. If k + 1 < n, since G is connected, there is a vertex $v \notin V(C)$ adjacent to a vertex in C. Then v and C induce a graph that contains a spanning path, i.e. a path on k + 2 vertices, a contradiction to the maximality of P. \Box

11 Random graphs

Definition 42 (Erdős-Rényi model of random graphs). $\mathcal{G}(n, p)$ is the probability space on all *n*-vertex graphs that results from independently deciding whether to include each of the $\binom{n}{2}$ possible edges with fixed probability $p \in [0, 1]$.

A property \mathcal{P} is a set of graphs, e.g. $\mathcal{P} = \{G : G \text{ is } k\text{-connected}\}.$

Let $(p_n) \in [0,1]^{\mathbb{N}}$ be a sequence. We say that $G \in \mathcal{G}(n, p_n)$ almost always has property \mathcal{P} if $\operatorname{Prob}(G \in \mathcal{G}(n, p_n) \cap \mathcal{P}) \to 1$ for $n \to \infty$. If furthermore (p_n) is constant p, we also say that almost all graphs in $\mathcal{G}(n, p)$ have property \mathcal{P} .

A function $f : \mathbb{N} \to [0, 1]$ is a threshold function for a property P if:

- For all $(p_n) \in [0,1]^{\mathbb{N}}$ with $p_n/f(n) \xrightarrow{n \to \infty} 0$ the graph $G \in \mathcal{G}(n, p_n)$ almost always does **not** have property \mathcal{P} .
- For all $(p_n) \in [0,1]^{\mathbb{N}}$ with $p_n/f(n) \xrightarrow{n \to \infty} \infty$ the graph $G \in \mathcal{G}(n, p_n)$ almost always does have property \mathcal{P} .

Not all properties have a threshold function.

Lemma 43. Let $G \in \mathcal{G}(n,p), S \subseteq V(G)$ and H a fixed graph on m edges and vertex set S. Then

$$\operatorname{Prob}(G[S] = H) = p^m (1-p)^{\binom{|S|}{2}-m}$$
 and $\operatorname{Prob}(H \subseteq G[S]) = p^m$.

Lemma 44. Let $G \in \mathcal{G}(n, p)$, let H be a fixed graph. Then

$$\operatorname{Prob}(H \subseteq_{ind} G) \xrightarrow{n \to \infty} 1$$

Lemma 45. Let $n \ge k \ge 2, G \in \mathcal{G}(n, p)$. Then

$$\operatorname{Prob}(\alpha(G) \ge k) \le \binom{n}{k} (1-p)^{\binom{k}{2}} \text{ and } \operatorname{Prob}(\omega(G) \ge k) \le \binom{n}{k} p^{\binom{k}{2}}.$$

Theorem 46 (Erdős). For any $k \ge 2$ there is a graph G on $\sqrt{2}^k$ vertices such that $\alpha(G) < k$ and $\omega(G) < k$. This implies $R(k,k) \ge 2^{k/2}$.

Proof. Let $n = \sqrt{2}^k$ and consider $G \in \mathcal{G}(n, 1/2)$. Then

$$\mathbb{P}((\alpha(G) \ge k) \lor (\omega(G) \ge k)) \le \mathbb{P}(\alpha(G) \ge k) + \mathbb{P}(\omega(G) \ge k) \le 2^{-\binom{k}{2}+1} < 1.$$

Thus $\mathbb{P}((\alpha(G) < k) \land (\omega(G) < k)) > 0$, so there is a graph G such that $\alpha(G) < k$ and $\omega(G) < k$.

Theorem 47 (Erdős-Hajnal). For any integer $k \ge 3$ there is a graph G with girth(G) > k and $\chi(G) > k$.