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Preface

This is a summary of the most important definitions, theorems and proofs
for the Graph Theory lecture at KIT. It is based on a short review done by
Prof. Axenovich at the end of winter term 2019/20, which was based on her
lecture notes, which themselves are based on the book Graph Theory1. I
added a short sketch to most proofs in order to make memorizing it easier.

1Reinhard Diestel. Graph theory. Fifth edition. Graduate texts in mathematics ; 173.
Berlin; [Heidelberg]: Springer, [2017]. isbn: 9783662536216; 3662536218.



1 Basic notions

Some common proof techniques

1. Induction

2. Extremal principle with contradiction: Consider a longest path/largest
matching/. . .

3. Counting arguments: Double counting, Pigeonhole principle, Parity ar-
guments

4. Algorithmic, iterative approach: Just do it!

5. Ramsey: Either the red coloring has a structure we want or if not then
that implies some structural information in the blue coloring.

6. Probabilistic method: P(
⋃

Bad event) < 1, therefore some object with
good properties exists.
Compute EX, using linearity of E.
Alterations: random object has some unwanted structure, simply de-
stroy it by removing an edge, etc.

7. Apply a theorem!

Theorem 1 (Tree equivalence theorem). The following statements are equiv-
alent:

1. G is a tree, i.e. connected and acyclic.

2. G is minimally connected.

3. G is maximally acyclic.

4. G is 1-degenerate.

5. G is connected and |E| = |V | − 1.

6. G is acyclic and |E| = |V | − 1.

7. G is connected and every non-trivial subgraph has a vertex v: d(v) ≤ 1.

8. Any two vertices of G are joined by a unique path.



Remark 2 (Characterization of bipartite graphs). G is bipartite ⇐⇒ G
has no odd cycle.

Proof. As G is bipartite, every cycle has to be even. Consider a partitioning
into sets A and B by distances to a vertex v modulo 2. Then, for every edge
ab look at shortest a-v-path and b-v-path and show that a and b can’t be in
the same partition.

AssumeG = A∪̇B bipartite. Then any cycle has the form a1, b1, a2, b2, . . . , ak, bk, a1,
so even length.

Assume G has no cycles of odd length and is connected, otherwise treat
components separately.
Let v ∈ V , A = {u ∈ V | dist(u, v) ≡ 0 (mod 2)}, B = {u ∈ V | dist(u, v) ≡
1 (mod 2)}.
A and B are independent sets: Let u1u2 ∈ E,P1 a shortest u1 − v-path, P2

a shortest u2 − v-path. Then W := P1 ∪ P2 ∪ {u1u2} is a closed walk. If
u1, u2 ∈ A or u1, u2 ∈ B, then W is a closed odd walk, thus G contains an
odd cycle, a contradiction. Thus, ∀u1u2, u1 and u2 are in different parts A
or B.

Definition 3. An Euler tour is a walk that visits every edge exactly once.

Theorem 4 (Euler tours). A connected graph has an Euler tour ⇐⇒ every
vertex has even degree.

Proof. Use extremal principle with contradiction: Consider a longest walk W
with non-repeating edges. Then show that it has to be closed and contain all
edges, otherwise W was not maximal.

A connected graph has an Euler tour ⇐⇒ every vertex has even degree.
Assume G is connected and has an Euler tour. Then by definition of the
tour, there is an even number of edges incident to each vertex.

Assume G is connected with all vertices of even degree. Consider a walkW :=
v0, e0, . . . , vk with non-repeated edges and having largest possible number of
edges.
First, W has to be a closed walk: If v0 6= vk, v0 is incident to an odd number
of edges in W , a contradiction to W ’s maximality.



Also, W contains all the edges of G: Otherwise, by G’s connectivity, there is
an edge e = vix of G that is incident to vi and not contained in W . Then the
walk x, e, vi, ei, vi+1, . . . , vk, e0, v1, e1, . . . , vi is longer than W , a contradiction.
Therefore, W is a closed walk containing all edges of G, an Euler tour.

2 Matchings

Theorem 5 (Hall’s marriage theorem). G bipartite with sets A,B. G has a
matching saturating A ⇐⇒ |N(S)| ≥ |S| ∀S ⊆ A.

Proof. Do induction on |A|. Consider two cases:
Case 1: |N(S)| ≥ |S|+1 ∀S ( A: Simply take out one edge and it’s vertices,
get a matching by induction hypothesis and add the edge to that matching.
Case 2: ∃A′ 6= ∅, such that |N(A′)| = |A′|: Consider G′ := G[A′ ∪ N(A′)].
Again, get a matching by induction hypothesis and combine that with a match-
ing in G−G′, also by induction hypothesis.

Induction on |A|:
For |A| = 1, the assertion is true. Let |A| ≥ 2:

Case 1. |N(S)| ≥ |S|+ 1 ∀S ( A.
Pick an edge ab (a ∈ A, b ∈ B) and consider G′ := G− {a, b}.
Every set ∅ 6= S ⊆ A \ {a} satisfies

|NG′(S)| ≥ |NG(S)| − 1 ≥ |S|,

so by induction hypothesis G′ contains a matching of A \ {a}, so together
with the edge ab, this is a matching of A.

Case 2. ∃A′ 6= ∅ with B′ := N(A′) and |B′| = |A′|.
By induction hypothesis, G′ := G[A′ ∪ B′] contains a matching of A′. But
G−G′ also satisfies the marriage condition: ∀S ⊆ A \A′ with |NG−G′(S)| <
|S| we would have |NG(S ∪ A′)| < |S ∪ A′|, contrary to our assumption.
Again, by induction, G−G′ contains a matching of A \ A′.
These two matchings result in a matching saturating A.

Theorem 6 (Kőnig’s theorem). If G is bipartite, then the size of a largest
matching is the same as the size of a smallest vertex cover.



Proof. A vertex cover contains at least one vertex of every edge of a match-
ing, so m ≤ c.
Define U ′ = {b : an alternating path ends in b} and U = U ′ ∪ {a : ab ∈
E(M), b /∈ U ′}. U is a vertex cover and |U | = m.

Let G = A∪̇B and let c be the size of a smallest vertex cover and m the size
of a largest matching. Since a vertex cover contains at least one vertex from
every matching edge, c ≥ m. To show m ≥ c consider a largest matching M
and let

U ′ = {b : ab ∈ E(M) for some a ∈ A and some alternating path ends in b},

U = U ′ ∪ {a : ab ∈ E(M), b 6∈ U ′}.
Note that |U | = m. U is a vertex cover, i.e. every edge of G contains a vertex
from U : If ab ∈ E(M), then either a or b is in U . For ab /∈ E(M):

Case 0. a ∈ U . Done.

Case 1. a is not incident to M . Then ab is an alternating path. b has to be
incident to M , otherwise M ∪ {ab} is a larger matching, a contradiction.

Case 2. a is incident to M . Then ab′ ∈M for some b′. Since a /∈ U , b′ ∈ U ,
thus there is an alternating path P ending in b′. If P contains b, then b ∈ U ,
otherwise Pb′ab is an alternating path ending in b, so b ∈ U .

Theorem 7 (Tutte’s theorem). G has a perfect matching ⇐⇒ ∀S ⊆ V
q(G− S) ≤ |S|.
For a graph G, q(G) denotes the amount of odd components of G.

3 Connectivity

Theorem 8 (Menger’s theorem). The maximum number of A-B-paths in G
is equal to the minimum number of vertices separating A from B.

Theorem 9 (Global version of Menger’s theorem). G is k-connected ⇐⇒
∀a, b ∈ V there are k independent a-b-paths.

Theorem 10 (Ear decomposition). G is 2-connected ⇐⇒ G has an ear
decomposition starting from any cycle in G.



Proof. Do induction over a given ear decomposition to show that it is 2-
connected. For the other implication, take a maximal subgraph obtained by
an ear decomposition starting from a cycle C in G and show that it is induced
and equal to G, both times contradicting its maximality if not.

Assume there is such an ear decomposition starting from C:

C = G0 ⊆ G1 ⊆ · · · ⊆ Gk = G

Do induction on i:
G0 = C is clearly 2-connected. If Gi+1 contains a cut-vertex, it must be on
the added ear. But deleting a vertex from the ear does not disconnect Gi+1

since an ear is contained in a cycle.

Assume G is 2-connected and C is a cycle in G. Let H = largest subgraph
obtained by ear decomposition starting with C. H is induced subgraph of
G, otherwise an edge with two vertices in V (H) is an ear, contradicting H’s
maximality.
Assume H 6= G. As G is connected, there is an edge e = uv, u ∈ V (H), v /∈
V (H). Since G− u is connected, consider a v−w-path P in G− u for some
w ∈ V (H)−u. Let w′ be the first vertex from V (H)−u on P . Then Pw′∪uv
is an ear of H, contradicting its maximality.

Definition 11 (Block). A maximal connected subgraph of G without a cut
vertex is called a block of G.

Remark 12 (Blocks). B is a block of G ⇐⇒ B is a bridge or a maximal
2-connected subgraph of G.

4 Planarity

Theorem 13 (Euler’s formula).

n−m+ f = 2,

where n = |G|, m = ||G|| = |E(G)| and f is the number of faces of G.

Proof. Fix n and do induction on m. If m ≤ n− 1, the graph is a tree.
Otherwise, consider G′ := G − e for an edge e that is contained in a cycle.



Note that e lies on the boundary of exactly two faces. Remove e and apply
induction hypothesis.

Fix n and do induction on m.
For m ≤ n−1, G is a tree and because m = n−1, we have n− (n−1) +f =
1 + 1 = 2.
So let m ≥ n. Then G has an edge e in a cycle.
Let G′ := G− e. Then e lies on the boundary of exactly two faces, f1, f2.
One can show that F (G′) = F (G)− {f1, f2} ∪ {f ′}, where f ′ = f1 ∪ f2 \ e.
Let n′,m′, f ′ be the number of vertices, edges and faces in G′. Then we see
that n = n′,m = m′ + 1, f = f ′ + 1. So, n−m+ f = n′ −m′ + f ′ = 2.

Definition 14 (Minor). X is a minor of G (X � G,MX ⊆ G), if X can
be obtained from G by successive vertex deletions, edge deletions and edge
contractions.

Definition 15 (Topological minor). G is a single-edge subdivision of X, if
V (G) = V (X) ∪ {v} and E(G) = E(X)− xy + xv + vy for xy ∈ E(X) and
v /∈ V (X).
G is a subdivision of X, if it can be obtained from X by a series of single-edge
subdivisions.
X is a topological minor of G (TX ⊆ G), if a subgraph of G is a subdivision
of X.

Theorem 16 (Kuratowski’s theorem). G is planar ⇐⇒ G 6⊇ TK5, TK3,3 ⇐⇒
G 6⊇MK5,MK3,3.

Definition 17 (Dual graph). The dual graph of a plane graph G has a vertex
for every face of G. It has an edge, wherever two faces of G are separated by
an edge (loops if the same face appears on both sides of an edge).

Theorem 18 (5-Color theorem). ∀G planar: χ(G) ≤ 5.

Proof. Do induction on |G|.
Assume |G| > 5 and G maximally planar, i.e. plane triangulation. Then by
Euler’s formula ∃v : d(v) ≤ 5.
By induction there is a coloring c of G− v using 5 colors. Assume c assigns
5 colors to N(v) = {v1, . . . , v5}, in clockwise order, and c(vi) = i.



If v1, v3 or v2, v4 are not linked by paths of colors only 1 and 3 or only 2 and
4, then v1 can be colored in 3 or v2 can be colored in 4. So assume there is
a v1-v3-path only colored 1 and 3 and a v2-v4-path only colored 2 and 4. But
then these paths must cross, a contradiction to the planarity of G.

Do induction on |G|.
If |V (G)| ≤ 5, the result is trivial.
Assume |G| > 5 and G is maximally planar, i.e. has a plane embedding that
is a triangulation. Then by Euler’s formula ∃v : d(v) ≤ 5.
By induction there is a coloring c of G− v using 5 colors. Assume c assigns
5 colors to N(v) = {v1, . . . , v5}, in clockwise order, and c(vi) = i.

Consider a subgraph induced by all vertices colored 1 or 3:
v1 and v3 are in different components of that subgraph, we can switch colors 1
and 3 in the component of v1 and color v in 1. So assume v1 and v3 are in the
same component and there is a path connecting them, colored in 1 and 3 only.

Now consider a subgraph induced by all vertices colored 2 or 4:
If v2 and v4 are in different components of that subgraph, we can switch
colors 2 and 4 in the component of v2 and color v in 2. So assume not, then
there is a path connecting them, colored in 2 and 4 only.

But this means, these two paths cross each other, contradicting the planarity
of G.

Theorem 19 (5-List-Color theorem). ∀G planar: χl(G) ≤ 5.

Proof. Prove a stronger statement:
Let G be an outer triangulation (max. planar) with two adjacent vertices
x, y on the other triangle. Let L : V (G)→ 2N be a list assignment, such that
|L(x)| = |L(y)| = 1, L(x) 6= L(y), |L(z)| = 3 for any other vertex z on the
outer face and |L(z)| = 5 for every vertex not on the bounded face.
Then G is L-colorable.

Do induction on |G| with an obvious basis for |G| = 3. Consider an outer
triangulation G on more than 3 vertices.

Case 1. There is a chord uv.
Let G = G1 ∪ G2, such that {u, v} = V (G1) ∩ V (G2), |G| > |Gi| ≥ 3, Gi



is an outer triangulation. W.l.o.g. x, y are on the outer face of G1. Apply
induction to G1 and obtain a proper L-coloring c′ of G1. Then apply induc-
tion on G2 with u, v taking the roles of x, y and list assignments L′ such that
L′(u) = {c′(u)}, L′(v) = {c′(v)}, L′(z) = L(z) for z /∈ {x, y}. Then there is a
proper L′-coloring c′′ of G2. These colorings coincide on u and v, so together
they form a proper coloring c of G, i.e. c(v) = c′(v) for v ∈ V (G1) and
c(v) = c′′(v) for v ∈ V (G2).

Case 2. There is no chord.
Let z be a neighbor of x on the boundary of the outer face, z 6= y. Let Z be
the set of neighbors of z not on the outer face. Let L(x) = {a}, L(y) = {b}.
Let c, d ∈ L(z) such that c 6= a and d 6= a. Let G′ = G− z. Finally, let L′ be
the list assignment for V (G′) such that L′(v) = L(v)− {c, d} for v ∈ Z and
L′(v) = L(v) for v /∈ Z.
By induction, G′ has a proper L′-coloring c′. Extend c′ to a coloring c of G:
Let c(v) = c′(v) if v 6= z. Let c(z) ∈ {c, d} \ {c′(q)} where q is the neighbor
of z on the outer face, q 6= x. z then has a color different from each of its
neighbors, so c is a proper L-coloring.

5 Colorings

Theorem 20 (Brook’s theorem). Let G be a connected graph.
Then χ(G) ≤ ∆(G), unless G is a complete graph or an odd cycle.

Proof. Do induction on n. If G has a cut-vertex v, apply induction on
G1 ∪ G2 = G, where {v} = V (G1) ∩ V (G2), |G1|, |G2| < |G|. This gives
χ(Gi) ≤ ∆(G) and the colors can be permutated so that v has the same color
in both colorings, resulting in a combined coloring of G.
If G has no cut-vertex and ∆(G) ≥ 3, then G is 2-connected.
Case 1. ∃v : d(v) ≤ ∆− 1.
Order the vertices vi, . . . , vn, such that v = vn and each vi has a neighbor
with larger index and color G greedily. At step i, there are at most ∆ − 1
neighbors of vi colored, so there is an avaiable color for vi.
Case 2. ∀v : d(v) = ∆.
Consider x, y, z ∈ V , s.t. xy /∈ E, xv, yv ∈ E and G − {x, y} is connected.
Order the vertices vi, . . . , vn, such that x = v1, y = v2, v = vn and each vi has
a neighbor with larger index and color G greedily.



x and y get the same color and as in the first case, vi can be colored. vn has
∆ colored neighbors, but c(x) = c(y).

Induction on n. Assume |G| > 3.
If G has a cut-vertex v, apply induction on G1, G2, s.t. G = G1 ∪ G2 and
V (G1) ∩ V (G2) = {v} and |G1| < |G| and |G2| < G.
If each of G1, G2 is not complete or an odd cycle, then χ(Gi) ≤ ∆(Gi) ≤
∆(G).
If Gi is complete or an odd cycle, ∆(Gi) < ∆(G) and χ(Gi) = ∆(Gi) + 1 ≤
∆(G). By making sure that the color of v is the same in an optimal proper
coloring of G1 and G2 we see that χ(G) ≤ ∆(G).

Note also that if ∆(G) ≤ 2, the theorem holds trivially, so we assume
∆(G) ≥ 3. Then G is 2-connected.

Case 1. ∃v : d(v) ≤ ∆− 1.
Order the vertices of G v1, . . . , vn, such that v = vn and each vi has a neigh-
bor with larger index. Color G greedily in this ordering.
At step i, there are at most ∆ − 1 neighbors of vi colored, so there is an
available color for vi.

Case 2. ∀v : d(v) = ∆.
Consider vertices x, y, z, s.t. xy /∈ E and xv, yv ∈ E and G − {x, y} is
connected. Order the vertices of G v1, . . . , vn, such that x = v1, y = v2,
v = vn and each vi (3 ≤ i < n) has a neighbor with larger index. Color G
greedily in this ordering.
v1 and v2 get the same color and as in the previous case, vi has at most ∆−1
colored neighbors (3 ≤ i < n), so it can be colored in the remaining color.
At the last step, vn has ∆ colored neighbors, but two of them, v1, v2 have
the same color, so there are at most ∆ = 1 colors used by neighbors of vn.
Thus vn can be colored in the remaining color.

Lemma 21 (Greedy coloring). χ(G) ≤ ∆(G) + 1

Proof. For any connected graph G and any vertex v there is an ordering of
the vertices of G: v1, . . . , vn, such that v = vn and ∀1 ≤ i < n vi has a higher
indexed neighbor:



Consider a spanning tree T of G and create a sequence of sets X1, . . . , Xn−1
with X1 = V,Xi = Xi−1 − {vi−1}, where vi is a leaf of T [Xi] not equal to v.
Then v1, . . . , vn is a desired ordering.

Lemma 22 (Clique number and chromatic number). ω(G) ≤ χ(G).

Definition 23 (Perfect graphs). G is perfect ⇐⇒ ω(H) = χ(H) ∀H ⊆
G, induced.

Theorem 24 (Weak perfect graph theorem). G is perfect ⇐⇒ G is perfect.

Theorem 25 (Strong perfect graph theorem). G is perfect ⇐⇒ G has no
odd hole (odd cycle on at least 5 vertices) or antihole (complement of an odd
hole) as induced subgraph.

Theorem 26 (Vizing’s theorem). χ′(G) ∈ {∆(G),∆(G) + 1}

Theorem 27 (Kőnig’s theorem). If G is bipartite, then χ′(G) = ∆(G).

Proof. χ′(G) ≥ ∆(G), because the edges incident to a vertex of maximum
degree require distinct colors.
For χ′(G) ≤ ∆(G) do induction on ||G||, with trivial base. Let e = yt ∈ E,
then by induction c is a proper edge coloring of G′ = G − e using colors
from {1, . . . ,∆(G)}. As dG′(x), dG′(y) ≤ ∆(G) − 1, there are color sets
∅ 6= Mis(x),Mis(y) ⊆ [∆(G)], s.t. no edge incident to v uses colors from
Mis(v). Consider two cases:
Case 1: Mis(x) ∩Mis(y) 6= ∅: Let c(e) ∈ Mis(x) ∩Mis(y).
Case 2: Mis(x) ∩ Mis(y) = ∅: Let α ∈ Mis(x), β ∈ Mis(y). Consider a
longest path P colored α and β starting at x. y is not a vertex in P , as
it is not incident to β, and not the other endpoint of P because of parity.
Switch colors α and β on P . Then we obtain a proper edge-coloring in which
β ∈ Mis(x) ∪Mis(y), which allows e to be colored β.

χ′(G) ≥ ∆(G), because the edges incident to a vertex of maximum degree
require distinct colors.

For the upper bound, χ′(G) ≤ ∆(G)+1, do induction on ||G||. Base ||G|| = 1
is trivial. Let G be a graph, ||G|| > 1, assume that the assertion holds for
all graphs with less edges.
Let e = yt ∈ E. By induction there is a proper edge coloring c of G′ = G− e
using colors from {1, . . . ,∆(G)}.



In G′ both x and y are incident to at most ∆(G)− 1 edges. Thus there are
color sets ∅ 6= Mis(x),Mis(y) ⊆ [∆(G)], where Mis(v) is the set of ”missing”
colors, i.e. colors not used on edges incident to v.

Case 1. Mis(x)∩Mis(y) 6= ∅: Let α ∈ Mis(x)∩Mis(y), color e with α. This
gives χ′(G) ≤ ∆(G).

Case 2. Mis(x) ∩Mis(y) = ∅: Let α ∈ Mis(x) and β ∈ Mis(y). Consider
a longest path P colored α and β starting at x. Because of parity, P does
not end in y, and because y is not incident to β, y is not a vertex on P .
Switch colors α and β on P . Then we obtain a proper edge-coloring in which
β ∈ Mis(x)∪Mis(y), which allows e to be colored β. Thus χ′(G) ≤ ∆(G).

Definition 28 (List-colorable, List-chromatic-number). Let L(v) ⊆ N be a
list of colors for each vertex v ∈ V .

G is L-list-colorable if there is a coloring c : V → N such that c(v) ∈ L(v)
∀v ∈ V and adjacent vertices have different colors.

G is k-list-colorable, if G is L-list-colorable for every L with L(v) = k for
every v ∈ V .

χl(G) is the smallest k such that G is k-list-colorable.

6 Flows

Theorem 29 (Ford-Fulkerson theorem). Let N = (G, s, t, c) be a network.
Then

max{|f | : f is an N-flow} = min{c(S, S) : (S, S) is a cut}.

Also, there is an integral flow f : T → Z≥0 with this maximum flow value.

7 Substructures in dense graphs

Definition 30. Extremal number The extremal number ex(n,H) is defined
as max{||G|| : |G| = n,G 6⊇ H}.



EX(n,H) := {G : ||G|| = ex(n,H), |G| = n,G 6⊇ H} is the set of H-free
graphs on n vertices with ex(n,H) edges.

Definition 31 (Turán graph). The Turán graph T (n, r) is the unique com-
plete r-partite graph of order n whose partite sets differ by at most 1 in size.
It does not contain Kr+1.
Notation: t(n, r) = ||T (n, r)||. If n = r ∗ s, T (n, r) is also denoted by Ks

r .

Theorem 32 (Turán’s theorem). Any graph G with n vertices, ex(n,Kr)
edges and Kr 6⊆ G is a Tr−1(n).
In other words, EX(n,Kr) = {T (n, r − 1)}.

Remark 33 (Binomial coefficient).(
n

k

)
=

n!

k!(n− k)!
.

Theorem 34 (Erdős-Stone-Simonovits). For any graph H and for any fixed
ε > 0, there is n0 such that for any n ≥ n0,(

1− 1

χ(H)− 1
− ε
)(

n

2

)
≤ ex(n,H) ≤

(
1− 1

χ(H)− 1
+ ε

)(
n

2

)
.

Definition 35 (ε-regularity). Let ||X, Y || denote the number of edges be-
tween X and Y . Then the density d(X, Y ) between X, Y is defined as

d(X, Y ) = ||X,Y ||
|X||Y | .

For ε > 0, the pair (X, Y ) is ε-regular, if |d(X, Y ) − d(A,B)| ≤ ε for all
A ⊆ X,B ⊆ Y with |A| ≥ ε|X| and |B| ≥ ε|Y |.

An ε-regular partition of G is a partition V = V0∪̇ . . . ∪̇Vk such that:

1. |V0| ≤ ε|V |,

2. |V1| = |V2| = · · · = |Vk|,

3. All but at most εk2 of the pairs (Vi, Vj) are ε-regular.

8 Substructures in sparse graphs

Conjecture 36 (Hadwiger’s conjecture). χ(H) = r ⇒ H ⊇MKr



9 Ramsey theory

Definition 37 (Ramsey number). The Ramsey number R(k) is the smallest
n ∈ N, such that every 2-edge-coloring of Kn contains a monochromatic Kk.

The asymetric Ramsey number R(k, l) is the smallest n ∈ N, such that every
red-blue edge-coloring of Kn contains a red Kk or a blue Kl.

The graph Ramsey number R(G,H) is the smallest n ∈ N, such that every
red-blue edge-coloring of Kn contains a red G or a blue H.

The hypergraph Ramsey number Rr(l1, . . . , lk) is the smallest n ∈ N, such
that for every k-coloring of

(
[n]
r

)
, there is an i ∈ [k] and a V ⊆ [n] with

|V | = li, such that all sets in
(
V
r

)
have color i.

Remark 38 (On proving graph Ramsey numbers). For the lower bound,
construct a coloring that doesn’t contain the red or blue subgraph.
For the upper bound, given a coloring, show that either the blue or the red
subgraph can be found.

Theorem 39 (Ramsey). For any k ∈ R we have
√

2
k ≤ R(k) ≤ 4k.

Proof. For the lower bound, use the probabilistic method, by constructing a
coloring of K2k/2. Then show that the probability of a monochromatic k-clique
is less than 1.
For the upper bound, consider an edge-coloring of G = K4k in red and blue.
Let x1 be an arbitrary vertex and X1 = V . Then let Xi+1 be the largest
monochromatic neighborhood of xi in Xi and call its color ci. Then let xi+1

an arbitrary vertex of Xi+1. Note that |Xi+1| ≥ d |Xi−1|
2
e ≥ 4k/2i. Thus

|Xi| > 0 as long as i ≤ 2k. Of c1, . . . , c2k−1, at least k are the same by pigeon-
hole principle. The vertices belonging to that color induce a monochromatic
k-vertex clique.

For the upper bound, consider an edge-coloring of G = K4k in red and
blue. Construct a sequence of vertices x1, . . . , x2k, a sequence of vertex sets
X1, . . . , X2k and a sequence of colors c1, . . . , c2k−1 as follows:
Let x1 be an arbitrary vertex and X1 = V (G).
Let Xi+1 be the largest monochromatic neighborhood of xi in Xi, call this



color ci. Let xi+1 be an arbitrary vertex in Xi+1.

We see that |Xi+1| ≥ d |Xi−1|
2
e ≥ 4k/2i. Thus |Xi| > 0 as long as 2k > (i− 1),

i.e. as long as i ≤ 2k. Consider vertices x1, . . . , x2k and colors c1, . . . , c2k−1.
At least k of these colors, say ci1, . . . , cik are the same by pigeonhole princi-
ple, say red. Then xi1, . . . , xik induce a k-vertex clique with all edges being
red.

For the lower bound, construct a coloring of Kn, n = 2k/2 with no monochro-
matic clique of size k. Color each edge red with probability 1

2
, otherwise blue.

Let S be a fixed set of k vertices. Then

Prob(S induces a red clique) = 2−(k
2).

So Prob(S induces a monochromatic clique) = 2−(k
2)+1. Thus

Prob(∃ monochromatic clique on k vertices) ≤
(
n

k

)
2−(k

2)+1

≤ nk

k!
2−k

2/2+k/2+1 ≤ 2k/2+1

k!
< 1.

10 Hamiltonian Cycles

Definition 40 (Hamiltonian cycle). A Hamiltonian cycle is a cycle that
visits every vertex exactly once.

Theorem 41 (Dirac’s theorem). If |G| =: n ≥ 3 and δ(G) ≥ n/2, then G
has a Hamiltonian cycle.

Proof. G is connected, as δ ≥ n/2. Consider a longest path P = (v0, . . . , vk)
and note that N(v0), N(vk) ⊆ V (P ). Show by pigeonhole principle that there
is a cycle C on k + 1 vertices. If k + 1 = n, C is a Hamiltonian cycle. If
not, then there is a vertex v /∈ V (C) that is adjacent to a vertex of C as G is
connected. Then v and C induce a path on k + 2 vertices, contradicting the
maximality of P .



G is connected, otherwise the smallest component has vertices of degree at
most n/2− 1, a contradiction.
If P = (v0, . . . , vk) is a longest path, then N(v0), N(vk) ⊆ V (P ).

There is a cycle C on k + 1 vertices in G:
Either by pigeonhole principle v0vk ∈ E(G), as |N(v0)|, |N(vk)| ≥ n/2 and
k ≤ n− 1, or ∃i such that v0vi+1, vivk ∈ E(G).

If k + 1 = n, C is a Hamiltonian cycle and we are done.
If k + 1 < n, since G is connected, there is a vertex v /∈ V (C) adjacent to a
vertex in C. Then v and C induce a graph that contains a spanning path,
i.e. a path on k + 2 vertices, a contradiction to the maximality of P .

11 Random graphs

Definition 42 (Erdős-Rényi model of random graphs). G(n, p) is the prob-
ability space on all n-vertex graphs that results from independently decid-
ing whether to include each of the

(
n
2

)
possible edges with fixed probability

p ∈ [0, 1].

A property P is a set of graphs, e.g. P = {G : G is k-connected}.

Let (pn) ∈ [0, 1]N be a sequence. We say that G ∈ G(n, pn) almost always has
property P if Prob(G ∈ G(n, pn) ∩ P) → 1 for n → ∞. If furthermore (pn)
is constant p, we also say that almost all graphs in G(n, p) have property P .

A function f : N→ [0, 1] is a threshold function for a property P if:

• For all (pn) ∈ [0, 1]N with pn/f(n)
n→∞−−−→ 0 the graph G ∈ G(n, pn)

almost always does not have property P .

• For all (pn) ∈ [0, 1]N with pn/f(n)
n→∞−−−→ ∞ the graph G ∈ G(n, pn)

almost always does have property P .

Not all properties have a threshold function.

Lemma 43. Let G ∈ G(n, p), S ⊆ V (G) and H a fixed graph on m edges
and vertex set S. Then

Prob(G[S] = H) = pm(1− p)(
|S|
2 )−m and Prob(H ⊆ G[S]) = pm.



Lemma 44. Let G ∈ G(n, p), let H be a fixed graph. Then

Prob(H ⊆
ind

G)
n→∞−−−→ 1.

Lemma 45. Let n ≥ k ≥ 2, G ∈ G(n, p). Then

Prob(α(G) ≥ k) ≤
(
n

k

)
(1− p)(

k
2) and Prob(ω(G) ≥ k) ≤

(
n

k

)
p(

k
2).

Theorem 46 (Erdős). For any k ≥ 2 there is a graph G on
√

2
k

vertices
such that α(G) < k and ω(G) < k. This implies R(k, k) ≥ 2k/2.

Proof. Let n =
√

2
k

and consider G ∈ G(n, 1/2). Then

P((α(G) ≥ k) ∨ (ω(G) ≥ k)) ≤ P(α(G) ≥ k) + P(ω(G) ≥ k) ≤ 2−(k
2)+1 < 1.

Thus P((α(G) < k) ∧ (ω(G) < k)) > 0, so there is a graph G such that
α(G) < k and ω(G) < k.

Theorem 47 (Erdős-Hajnal). For any integer k ≥ 3 there is a graph G with
girth(G) > k and χ(G) > k.


