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Preface

This is a summary of the most important definitions, theorems and proofs
for the Graph Theory lecture at KIT. It is based on a short review done by
Prof. Axenovich at the end of winter term 2019/20, which was based on her
lecture notes, which themselves are based on the book Graph Theory!. I
added a short sketch to most proofs in order to make memorizing it easier.

!Reinhard Diestel. Graph theory. Fifth edition. Graduate texts in mathematics ; 173.
Berlin; [Heidelberg]: Springer, [2017]. ISBN: 9783662536216; 3662536218.



1

Basic notions

Some common proof techniques

1.

2.

7.

Induction

Extremal principle with contradiction: Consider a longest path/largest
matching/. . .

Counting arguments: Double counting, Pigeonhole principle, Parity ar-
guments

. Algorithmic, iterative approach: Just do it!

Ramsey: Either the red coloring has a structure we want or if not then
that implies some structural information in the blue coloring.

Probabilistic method: P(|J Bad event) < 1, therefore some object with
good properties exists.

Compute EX, using linearity of .

Alterations: random object has some unwanted structure, simply de-
stroy it by removing an edge, etc.

Apply a theorem!

Theorem 1 (Tree equivalence theorem). The following statements are equiv-

alent:
1.

2.

G is a tree, i.e. connected and acyclic.
G is minimally connected.

G is maximally acyclic.

G is 1-degenerate.

G is connected and |E| = |V|— 1.

G is acyclic and |E| = |V| — 1.

G is connected and every non-trivial subgraph has a vertex v: d(v) < 1.

. Any two vertices of GG are joined by a unique path.



Remark 2 (Characterization of bipartite graphs). G is bipartite <— G
has no odd cycle.

Proof. As G is bipartite, every cycle has to be even. Consider a partitioning
into sets A and B by distances to a vertex v modulo 2. Then, for every edge
ab look at shortest a-v-path and b-v-path and show that a and b can’t be in
the same partition.

Assume G = AUB bipartite. Then any cycle has the form ay, by, as, bo, . . . , ax, by, a1,
so even length.

Assume G has no cycles of odd length and is connected, otherwise treat
components separately.

Let v eV, A= {ue V|dist(u,v) =0 (mod 2)}, B = {u € V| dist(u,v) =
1 (mod 2)}.

A and B are independent sets: Let ujus € E, Py a shortest u; — v-path, P,
a shortest us — v-path. Then W := P, U P, U {ujus} is a closed walk. If
Uy, Uy € A or up,us € B, then W is a closed odd walk, thus G contains an
odd cycle, a contradiction. Thus, Vujus, u; and us are in different parts A
or B. O

Definition 3. An Euler tour is a walk that visits every edge exactly once.

Theorem 4 (Euler tours). A connected graph has an Euler tour <= every
vertex has even degree.

Proof. Use extremal principle with contradiction: Consider a longest walk W
with non-repeating edges. Then show that it has to be closed and contain all
edges, otherwise W was not maximal.

A connected graph has an Euler tour <= every vertex has even degree.
Assume G is connected and has an Fuler tour. Then by definition of the
tour, there is an even number of edges incident to each vertex.

Assume G is connected with all vertices of even degree. Consider a walk W :=
Vg, €9, - - - , U, With non-repeated edges and having largest possible number of
edges.

First, W has to be a closed walk: If vy # vy, vg is incident to an odd number
of edges in W, a contradiction to W’s maximality.



Also, W contains all the edges of G: Otherwise, by G’s connectivity, there is
an edge e = v;x of G that is incident to v; and not contained in W. Then the
walk x, e, v;, €;, Vi1, ..., Uk, €0, V1, €1, . .., V; is longer than W a contradiction.
Therefore, W is a closed walk containing all edges of GG, an Euler tour. [

2 Matchings

Theorem 5 (Hall’s marriage theorem). G bipartite with sets A, B. G has a
matching saturating A <= |N(S)| > |S| VS C A.

Proof. Do induction on |A|. Consider two cases:

Case 1: |N(S)| > |S|+1 VS C A: Simply take out one edge and it’s vertices,
get a matching by induction hypothesis and add the edge to that matching.
Case 2: JA" # 0, such that [N(A")| = |A'|: Consider G' := G[A" U N(4)].
Again, get a matching by induction hypothesis and combine that with a match-
ing in G — G, also by induction hypothesis.

Induction on |A|:
For |A| = 1, the assertion is true. Let |A| > 2:

Case 1. |[N(S)| > |S]+1VS C A.
Pick an edge ab (a € A,b € B) and consider G’ := G — {a, b}.
Every set § # S C A\ {a} satisfies

[Ner ()| = [Na(S)| =1 = |5],

so by induction hypothesis G’ contains a matching of A \ {a}, so together
with the edge ab, this is a matching of A.

Case 2. JA" # () with B' := N(A’) and |B'| = |A'|.

By induction hypothesis, G’ := G[A’ U B’] contains a matching of A’. But
G — G’ also satisfies the marriage condition: V.S C A\ A" with |[Ng_¢/(5)| <
|S| we would have |Ng(S'U A')| < |S U A|, contrary to our assumption.
Again, by induction, G — G’ contains a matching of A\ A’.

These two matchings result in a matching saturating A. O]

Theorem 6 (Konig’s theorem). If G is bipartite, then the size of a largest
matching is the same as the size of a smallest vertex cover.



Proof. A wvertex cover contains at least one vertex of every edge of a match-
mg, som < c.

Define U' = {b : an alternating path ends in b} and U = U' U {a : ab €
E(M),b¢ U'}. U is a vertex cover and |U| = m.

Let G = AUB and let ¢ be the size of a smallest vertex cover and m the size
of a largest matching. Since a vertex cover contains at least one vertex from
every matching edge, ¢ > m. To show m > ¢ consider a largest matching M
and let

U' ={b:abe E(M) for some a € A and some alternating path ends in b},
U=UU{a:abe E(M),b¢ U'}.

Note that |U| = m. U is a vertex cover, i.e. every edge of G contains a vertex

from U: If ab € E(M), then either a or b is in U. For ab ¢ E(M):

Case 0. a € U. Done.

Case 1. a is not incident to M. Then ab is an alternating path. b has to be
incident to M, otherwise M U {ab} is a larger matching, a contradiction.

Case 2. a is incident to M. Then ab’ € M for some b'. Since a ¢ U, V' € U,
thus there is an alternating path P ending in ¢'. If P contains b, then b € U,
otherwise Pb'ab is an alternating path ending in b, so b € U. O

Theorem 7 (Tutte’s theorem). G has a perfect matching <= VS C V
q(G—5) <|5].
For a graph G, ¢(G) denotes the amount of odd components of G.

3 Connectivity

Theorem 8 (Menger’s theorem). The maximum number of A-B-paths in G
is equal to the minimum number of vertices separating A from B.

Theorem 9 (Global version of Menger’s theorem). G is k-connected <=
Va,b € V there are k independent a-b-paths.

Theorem 10 (Ear decomposition). G is 2-connected <= G has an ear
decomposition starting from any cycle in G.



Proof. Do induction over a given ear decomposition to show that it is 2-
connected. For the other implication, take a maximal subgraph obtained by
an ear decomposition starting from a cycle C' in G and show that it is induced
and equal to G, both times contradicting its mazximality if not.

Assume there is such an ear decomposition starting from C-

C=G,CG, C---CGr=G

Do induction on i:

Gy = C' is clearly 2-connected. If GG;;; contains a cut-vertex, it must be on
the added ear. But deleting a vertex from the ear does not disconnect G,
since an ear is contained in a cycle.

Assume G is 2-connected and C' is a cycle in G. Let H = largest subgraph
obtained by ear decomposition starting with C'. H is induced subgraph of
G, otherwise an edge with two vertices in V(H) is an ear, contradicting H’s
maximality.

Assume H # G. As G is connected, there is an edge e = uwv,u € V(H),v ¢
V(H). Since G — u is connected, consider a v — w-path P in G — u for some
w € V(H)—u. Let w’ be the first vertex from V(H)—wu on P. Then Pw'Uuv
is an ear of H, contradicting its maximality. O]

Definition 11 (Block). A maximal connected subgraph of G without a cut
vertex is called a block of G.

Remark 12 (Blocks). B is a block of G <= B is a bridge or a mazimal
2-connected subgraph of G.

4 Planarity
Theorem 13 (Euler’s formula).
n—m+ f=2,

where n = |G|, m = ||G|| = |E(G)| and f is the number of faces of G.

Proof. Fix n and do induction on m. If m <n — 1, the graph is a tree.
Otherwise, consider G' := G — e for an edge e that is contained in a cycle.



Note that e lies on the boundary of exactly two faces. Remove e and apply
induction hypothesis.

Fix n and do induction on m.

Form <n—1, Gis a tree and because m =n—1, we haven—(n—1)+ f =
1+1=2.

So let m > n. Then G has an edge e in a cycle.

Let G’ := G — e. Then e lies on the boundary of exactly two faces, fi, fa.
One can show that F(G') = F(G) — {f1, fo} U{f'}, where f' = f1 U fo \ e.
Let n/,m/, f' be the number of vertices, edges and faces in G. Then we see
that n=n'm=m'+1,f=f+1. Soon—m+ f=n"—-m'+ f =2 O

Definition 14 (Minor). X is a minor of G (X = G,MX C G), if X can
be obtained from G by successive vertex deletions, edge deletions and edge
contractions.

Definition 15 (Topological minor). G is a single-edge subdivision of X, if
V(G) =V(X)U{v} and E(G) = E(X) — 2y + v + vy for zy € E(X) and
v ¢ V(X).

G is a subdivision of X, if it can be obtained from X by a series of single-edge
subdivisions.

X is a topological minor of G (TX C @), if a subgraph of G is a subdivision
of X.

Theorem 16 (Kuratowski’s theorem). G'is planar <= G 2 T K5, TK33 <=
G 2 MKs, MKs..

Definition 17 (Dual graph). The dual graph of a plane graph G has a vertex
for every face of G. It has an edge, wherever two faces of G are separated by
an edge (loops if the same face appears on both sides of an edge).

Theorem 18 (5-Color theorem). VG planar: x(G) < 5.

Proof. Do induction on |G].

Assume |G| > 5 and G mazimally planar, i.e. plane triangulation. Then by
FEuler’s formula v : d(v) < 5.

By induction there is a coloring ¢ of G — v using 5 colors. Assume ¢ assigns
5 colors to N(v) = {vy,...,vs}, in clockwise order, and c(v;) = i.



If vi,v3 or ve, vy are not linked by paths of colors only 1 and 3 or only 2 and
4, then vy can be colored in 3 or vy can be colored in 4. So assume there is
a v1-vs-path only colored 1 and 3 and a vy-vy-path only colored 2 and 4. But
then these paths must cross, a contradiction to the planarity of G.

Do induction on |G]|.

If |[V(G)| <5, the result is trivial.

Assume |G| > 5 and G is maximally planar, i.e. has a plane embedding that
is a triangulation. Then by Euler’s formula Jv : d(v) <5.

By induction there is a coloring ¢ of G — v using 5 colors. Assume ¢ assigns
5 colors to N(v) = {v1,...,v5}, in clockwise order, and c(v;) = i.

Consider a subgraph induced by all vertices colored 1 or 3:

vy and v3 are in different components of that subgraph, we can switch colors 1
and 3 in the component of v; and color v in 1. So assume v, and v3 are in the
same component and there is a path connecting them, colored in 1 and 3 only.

Now consider a subgraph induced by all vertices colored 2 or 4:

If v and vy are in different components of that subgraph, we can switch
colors 2 and 4 in the component of v, and color v in 2. So assume not, then
there is a path connecting them, colored in 2 and 4 only.

But this means, these two paths cross each other, contradicting the planarity

Theorem 19 (5-List-Color theorem). VG planar: y;(G) < 5.

Proof. Prove a stronger statement:

Let G be an outer triangulation (max. planar) with two adjacent vertices
x,y on the other triangle. Let L : V(G) — 2N be a list assignment, such that
|L(z)| = |L(y)| = 1, L(z) # L(y),|L(z)| = 3 for any other vertex z on the
outer face and |L(z)| = 5 for every vertex not on the bounded face.

Then G is L-colorable.

Do induction on |G| with an obvious basis for |G| = 3. Consider an outer
triangulation G on more than 3 vertices.

Case 1. There is a chord uw.
Let G = G U G, such that {u,v} = V(G,) NV (Gs), |G| > |Gi| > 3, G;



is an outer triangulation. W.l.o.g. x,y are on the outer face of G;. Apply
induction to G; and obtain a proper L-coloring ¢’ of G;. Then apply induc-
tion on Gy with u, v taking the roles of =,y and list assignments L’ such that
L'(u) ={d(w)}, L'(v) ={d(v)}, L'(z) = L(2) for z ¢ {z,y}. Then there is a
proper L'-coloring ¢’ of GG5. These colorings coincide on u and v, so together
they form a proper coloring ¢ of G, i.e. ¢(v) = ¢(v) for v € V(G;) and
c(v) = "(v) for v € V(Gy).

Case 2. There is no chord.
Let z be a neighbor of x on the boundary of the outer face, z # y. Let Z be
the set of neighbors of z not on the outer face. Let L(x) = {a}, L(y) = {b}.
Let ¢,d € L(z) such that ¢ # a and d # a. Let G’ = G — z. Finally, let L’ be
the list assignment for V(G’) such that L'(v) = L(v) — {¢,d} for v € Z and
L'(v) = L(v) forv ¢ Z.
By induction, G’ has a proper L’-coloring ¢’. Extend ¢’ to a coloring ¢ of G:
Let c(v) = d(v) if v # z. Let ¢(2) € {¢,d} \ {c(q)} where ¢ is the neighbor
of z on the outer face, ¢ # z. z then has a color different from each of its
neighbors, so ¢ is a proper L-coloring.

O

5 Colorings

Theorem 20 (Brook’s theorem). Let G be a connected graph.
Then x(G) < A(G), unless G is a complete graph or an odd cycle.

Proof. Do induction on n. If G has a cut-vertex v, apply induction on
G1 UGy = G, where {v} = V(G1) NV (Gs), |Gil,|Ga| < |G|. This gives
X(G;) < A(G) and the colors can be permutated so that v has the same color
in both colorings, resulting in a combined coloring of G.

If G has no cut-vertex and A(G) > 3, then G is 2-connected.

Case 1. Fv:d(v) < A—1.

Order the vertices v;, . ..,v,, such that v = v, and each v; has a neighbor
with larger index and color G greedily. At step i, there are at most A — 1
neighbors of v; colored, so there is an avaiable color for v;.

Case 2. Vv : d(v) = A.

Consider x,y,z € V, s.t. xzy ¢ E, xv,yv € E and G — {x,y} is connected.
Order the vertices v;, ..., v,, such that x = v,y = v9,v = v,, and each v; has
a neighbor with larger index and color G greedily.



x and y get the same color and as in the first case, v; can be colored. v, has
A colored neighbors, but c(x) = c(y).

Induction on n. Assume |G| > 3.

If G has a cut-vertex v, apply induction on Gy, G, s.t. G = Gy UGy and
V(G1) NV (Gy) = {v} and |G| < |G| and |G3| < G.

If each of Gy, Gy is not complete or an odd cycle, then x(G;) < A(G;) <
A(G).

If G; is complete or an odd cycle, A(G;) < A(G) and x(G;) = A(G;) +1 <
A(G). By making sure that the color of v is the same in an optimal proper
coloring of G; and Gy we see that x(G) < A(G).

Note also that if A(G) < 2, the theorem holds trivially, so we assume
A(G) > 3. Then G is 2-connected.

Case 1. Jv:d(v) < A—1.

Order the vertices of G vy, ...,v,, such that v = v,, and each v; has a neigh-
bor with larger index. Color G greedily in this ordering.

At step i, there are at most A — 1 neighbors of v; colored, so there is an
available color for v;.

Case 2. Vv : d(v) = A.

Consider vertices z,y, 2, s.t. xy ¢ E and zv,yv € E and G — {z,y} is
connected. Order the vertices of G vy,...,v,, such that z = vy, y = vs,
v = v, and each v; (3 < i < n) has a neighbor with larger index. Color G
greedily in this ordering.

v, and v, get the same color and as in the previous case, v; has at most A —1
colored neighbors (3 < i < n), so it can be colored in the remaining color.
At the last step, v, has A colored neighbors, but two of them, vy, vy have
the same color, so there are at most A = 1 colors used by neighbors of v,,.
Thus v,, can be colored in the remaining color. O]

Lemma 21 (Greedy coloring). x(G) < A(G) + 1

Proof. For any connected graph GG and any vertex v there is an ordering of
the vertices of G: vy, ..., v,, such that v = v, and V1 < i < n v; has a higher
indexed neighbor:



Consider a spanning tree 1" of G and create a sequence of sets Xq,..., X, _1
with Xy =V, X; = X;_1 — {v;_1}, where v; is a leaf of T'[X;] not equal to v.
Then vy,...,v, is a desired ordering. O]

Lemma 22 (Clique number and chromatic number). w(G) < x(G).

Definition 23 (Perfect graphs). G is perfect <= w(H) = x(H) VH C
G, induced.

Theorem 24 (Weak perfect graph theorem). G is perfect <= G is perfect.

Theorem 25 (Strong perfect graph theorem). G is perfect <= G has no
odd hole (odd cycle on at least 5 vertices) or antihole (complement of an odd
hole) as induced subgraph.

Theorem 26 (Vizing’s theorem). \/(G) € {A(G),A(G) + 1}
Theorem 27 (Kénig’s theorem). If G is bipartite, then x'(G) = A(G).

Proof. X'(G) > A(G), because the edges incident to a vertexr of maximum
degree require distinct colors.

For X'(G) < A(G) do induction on ||G||, with trivial base. Let e = yt € F,
then by induction ¢ is a proper edge coloring of G' = G — e using colors
from {1,...,A(G)}. As dg/(x),de(y) < A(G) — 1, there are color sets
0 # Mis(x), Mis(y) C [A(G)], s.t. no edge incident to v uses colors from
Mis(v). Consider two cases:

Case 1: Mis(z) N Mis(y) # 0: Let c(e) € Mis(z) N Mis(y).

Case 2: Mis(x) N Mis(y) = 0: Let a € Mis(x), € Mis(y). Consider a
longest path P colored o and (B starting at x. vy is not a vertex in P, as
it 1s not incident to B, and not the other endpoint of P because of parity.
Switch colors o and 3 on P. Then we obtain a proper edge-coloring in which
B € Mis(x) U Mis(y), which allows e to be colored 5.

X' (G) > A(G), because the edges incident to a vertex of maximum degree
require distinct colors.

For the upper bound, x'(G) < A(G)+1, do induction on ||G||. Base ||G|| =1
is trivial. Let G be a graph, ||G|| > 1, assume that the assertion holds for
all graphs with less edges.

Let e = yt € E. By induction there is a proper edge coloring c of G' = G —e¢
using colors from {1,..., A(G)}.



In G’ both z and y are incident to at most A(G) — 1 edges. Thus there are
color sets () # Mis(z), Mis(y) C [A(G)], where Mis(v) is the set of ”missing”
colors, i.e. colors not used on edges incident to v.

Case 1. Mis(x) N Mis(y) # 0: Let o € Mis(x) N Mis(y), color e with a.. This
gives X'(G) < A(G).

Case 2. Mis(x) N Mis(y) = 0: Let o € Mis(z) and S € Mis(y). Consider
a longest path P colored o and 3 starting at x. Because of parity, P does
not end in y, and because y is not incident to [, y is not a vertex on P.

Switch colors a and 8 on P. Then we obtain a proper edge-coloring in which
B € Mis(z)UMis(y), which allows e to be colored 5. Thus x'(G) < A(G). O

Definition 28 (List-colorable, List-chromatic-number). Let L(v) C N be a
list of colors for each vertex v € V.

G is L-list-colorable if there is a coloring ¢ : V' — N such that ¢(v) € L(v)
Vv € V and adjacent vertices have different colors.

G is k-list-colorable, if G is L-list-colorable for every L with L(v) = k for
every v € V.

X1(G) is the smallest k such that G is k-list-colorable.

6 Flows

Theorem 29 (Ford-Fulkerson theorem). Let N = (G, s,t,¢) be a network.
Then

max{|f| : f is an N-flow} = min{c(S, S) : (S, 9) is a cut}.

Also, there is an integral flow f : 7T — Z>( with this maximum flow value.

7 Substructures in dense graphs

Definition 30. Extremal number The extremal number ex(n, H) is defined
as max{||G|| : |G| =n,G 2 H}.



EX(n,H) == {G : ||G]|| = ex(n,H),|G| = n,G 2 H} is the set of H-free
graphs on n vertices with ex(n, H) edges.

Definition 31 (Turén graph). The Turdn graph T'(n,r) is the unique com-
plete r-partite graph of order n whose partite sets differ by at most 1 in size.
It does not contain K, ;.

Notation: t(n,r) = ||T'(n,7)||. If n =rx*s, T(n,r) is also denoted by K?.

Theorem 32 (Turdn’s theorem). Any graph G with n vertices, ex(n, K,)
edges and K, € G is a T,_1(n).
In other words, EX(n, K,) = {T'(n,r — 1)}.

Remark 33 (Binomial coefficient).

(1) = m

Theorem 34 (Erdés-Stone-Simonovits). For any graph H and for any fixed
€ > 0, there is ng such that for any n > ny,

(o) (o) == (-] (3)

Definition 35 (e-regularity). Let ||X, Y| denote the number of edges be-
tween X and Y. Then the density d(X,Y) between X,Y is defined as

XY
d(X,Y) = It

For ¢ > 0, the pair (X,Y) is e-regular, if |[d(X,Y) — d(A, B)| < € for all
AC X,B CY with |A| > ¢|X]| and |B| > €]Y].

An e-regular partition of G is a partition V = VyU. ..UV, such that:
1. Vol < €|V,
2. Wi =[Va| = -+ = [Vil,

3. All but at most €k? of the pairs (V;,V;) are e-regular.

8 Substructures in sparse graphs

Conjecture 36 (Hadwiger’s conjecture). x(H) =r = H O MK,



9 Ramsey theory

Definition 37 (Ramsey number). The Ramsey number R(k) is the smallest
n € N, such that every 2-edge-coloring of K,, contains a monochromatic K.

The asymetric Ramsey number R(k,[) is the smallest n € N, such that every
red-blue edge-coloring of K, contains a red K} or a blue Kj.

The graph Ramsey number R(G, H) is the smallest n € N, such that every
red-blue edge-coloring of K,, contains a red G or a blue H.

The hypergraph Ramsey number R.(ly,...,l) is the smallest n € N, such
that for every k-coloring of ([Z]), there is an ¢ € [k] and a V' C [n] with
|V| = I;, such that all sets in (Z) have color .

Remark 38 (On proving graph Ramsey numbers). For the lower bound,
construct a coloring that doesn’t contain the red or blue subgraph.

For the upper bound, given a coloring, show that either the blue or the red
subgraph can be found.

Theorem 39 (Ramsey). For any k € R we have V2 < R(k) < 4k,

Proof. For the lower bound, use the probabilistic method, by constructing a
coloring of Kyk2. Then show that the probability of a monochromatic k-clique
15 less than 1.

For the upper bound, consider an edge-coloring of G = Ky in red and blue.
Let x1 be an arbitrary verter and X1 = V. Then let X;y1 be the largest
monochromatic neighborhood of x; in X; and call its color ¢;. Then let x;14
an arbitrary verter of X;11. Note that | X;11| > [%} > 4k /21 Thus
| X;| > 0 as long asi < 2k. Ofcq,...,cop_1, at least k are the same by pigeon-
hole principle. The vertices belonging to that color induce a monochromatic
k-vertex clique.

For the upper bound, consider an edge-coloring of G = K, in red and
blue. Construct a sequence of vertices x1, ..., xq, a sequence of vertex sets
X1, ..., X9, and a sequence of colors ¢y, ..., cop_1 as follows:

Let x; be an arbitrary vertex and X; = V(G).
Let X;,1 be the largest monochromatic neighborhood of z; in X, call this



color ¢;. Let z;,1 be an arbitrary vertex in X;,;.

We see that [X;41| > [ > 4%/21 Thus |X;] > 0 as long as 2k > (i — 1),
i.e. as long as ¢ < 2k. Consider vertices x1,..., o and colors ¢y, ..., Cop_1.
At least k of these colors, say ¢;, ..., ¢y are the same by pigeonhole princi-
ple, say red. Then x;,...,x; induce a k-vertex clique with all edges being

red.

For the lower bound, construct a coloring of K,,, n = 2¥/? with no monochro-
matic clique of size k. Color each edge red with probability %, otherwise blue.
Let S be a fixed set of k vertices. Then

Prob(S induces a red clique) = 9= (3),
So Prob(S induces a monochromatic clique) = 9-(2)*1, Thus

Prob(3 monochromatic clique on k vertices) < (Z) 9-(5)+

k k/2+1
N o k2j2kj241 o 2
< k!2 < T 1.

10 Hamiltonian Cycles

Definition 40 (Hamiltonian cycle). A Hamiltonian cycle is a cycle that
visits every vertex exactly once.

Theorem 41 (Dirac’s theorem). If |G| =: n > 3 and 6(G) > n/2, then G
has a Hamiltonian cycle.

Proof. G is connected, as 6 > n/2. Consider a longest path P = (vg, ..., vt)
and note that N(vg), N(vx) C V(P). Show by pigeonhole principle that there
is a cycle C on k + 1 vertices. If k+1 =mn, C is a Hamiltonian cycle. If
not, then there is a vertex v ¢ V(C') that is adjacent to a vertex of C' as G is
connected. Then v and C induce a path on k + 2 vertices, contradicting the
maximality of P.



G is connected, otherwise the smallest component has vertices of degree at
most n/2 — 1, a contradiction.
If P=(vo,...,vg) is a longest path, then N(vg), N(vg) C V(P).

There is a cycle C' on k + 1 vertices in G:
Either by pigeonhole principle vovy € E(G), as |N(vo)l, |N(vk)| > n/2 and
k <mn—1, or Ji such that vov;41,v;v, € E(G).

If K+ 1=n, C is a Hamiltonian cycle and we are done.

If k+ 1 < n, since G is connected, there is a vertex v ¢ V(C') adjacent to a
vertex in C'. Then v and C' induce a graph that contains a spanning path,
i.e. a path on k + 2 vertices, a contradiction to the maximality of P. O]

11 Random graphs

Definition 42 (Erdés-Rényi model of random graphs). G(n,p) is the prob-
ability space on all n-vertex graphs that results from independently decid-
ing whether to include each of the (Z) possible edges with fixed probability
p € [0,1].

A property P is a set of graphs, e.g. P = {G : G is k-connected}.

Let (p,) € [0,1]Y be a sequence. We say that G' € G(n,p,) almost always has
property P if Prob(G € G(n,p,) NP) — 1 for n — oo. If furthermore (p,)
is constant p, we also say that almost all graphs in G(n,p) have property P.

A function f: N — [0,1] is a threshold function for a property P if:

e For all (p,) € [0,1)N with p,/f(n) =% 0 the graph G € G(n,p,)
almost always does not have property P.

e For all (p,) € [0,1]N with p,/f(n) == oo the graph G € G(n,p,)
almost always does have property P.

Not all properties have a threshold function.

Lemma 43. Let G € G(n,p),S C V(G) and H a fixed graph on m edges

and vertex set S. Then
IS

Prob(G[S] = H) = p™(1 — p)(2)=™ and Prob(H C G[S]) = p™.



Lemma 44. Let G € G(n,p), let H be a fixed graph. Then

Prob(H C G) == 1.

ind
Lemma 45. Let n > k > 2,G € G(n,p). Then

n

Prob(a(G) > k) < (k

)@ =98 and Probe(c) = 0 < (7))

Theorem 46 (Erdds). For any k > 2 there is a graph G on \/§k vertices
such that a(G) < k and w(G) < k. This implies R(k, k) > 2+/2,

Proof. Let n = V2" and consider G € G(n,1/2). Then

P((l(G) = k) V (w(G) > k) < P(a(G) > k) + P(w(G) > k) < 27 &)+ < 1.

Thus P((a(G) < k) A (w(G) < k)) > 0, so there is a graph G such that
a(G) < k and w(G) < k. O

Theorem 47 (Erdés-Hajnal). For any integer £ > 3 there is a graph G with
girth(G) > k and x(G) > k.



