Graph Theory Review

Niklas Bühler

Winterterm 2019/20

Contents

1 Basic notions 3
2 Matchings 5
3 Connectivity 6
4 Planarity 7
5 Colorings 10
6 Flows 13
7 Substructures in dense graphs 13
8 Substructures in sparse graphs 14
9 Ramsey theory 15
10 Hamiltonian Cycles 16
11 Random graphs 17

Preface

This is a summary of the most important definitions, theorems and proofs for the Graph Theory lecture at KIT. It is based on a short review done by Prof. Axenovich at the end of winter term 2019/20, which was based on her lecture notes, which themselves are based on the book Graph Theory ${ }^{1}$. I added a short sketch to most proofs in order to make memorizing it easier.

[^0]
1 Basic notions

Some common proof techniques

1. Induction
2. Extremal principle with contradiction: Consider a longest path/largest matching/...
3. Counting arguments: Double counting, Pigeonhole principle, Parity arguments
4. Algorithmic, iterative approach: Just do it!
5. Ramsey: Either the red coloring has a structure we want or if not then that implies some structural information in the blue coloring.
6. Probabilistic method: $\mathbb{P}(\bigcup$ Bad event $)<1$, therefore some object with good properties exists.
Compute $\mathbb{E} X$, using linearity of \mathbb{E}.
Alterations: random object has some unwanted structure, simply destroy it by removing an edge, etc.
7. Apply a theorem!

Theorem 1 (Tree equivalence theorem). The following statements are equivalent:

1. G is a tree, i.e. connected and acyclic.
2. G is minimally connected.
3. G is maximally acyclic.
4. G is 1-degenerate.
5. G is connected and $|E|=|V|-1$.
6. G is acyclic and $|E|=|V|-1$.
7. G is connected and every non-trivial subgraph has a vertex $v: d(v) \leq 1$.
8. Any two vertices of G are joined by a unique path.

Remark 2 (Characterization of bipartite graphs). G is bipartite $\Longleftrightarrow G$ has no odd cycle.

Proof. As G is bipartite, every cycle has to be even. Consider a partitioning into sets A and B by distances to a vertex v modulo 2. Then, for every edge $a b$ look at shortest $a-v$-path and b-v-path and show that a and b can't be in the same partition.

Assume $G=A \dot{\cup} B$ bipartite. Then any cycle has the form $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{k}, b_{k}, a_{1}$, so even length.

Assume G has no cycles of odd length and is connected, otherwise treat components separately.
Let $v \in V, A=\{u \in V \mid \operatorname{dist}(u, v) \equiv 0(\bmod 2)\}, B=\{u \in V \mid \operatorname{dist}(u, v) \equiv$ $1(\bmod 2)\}$.
A and B are independent sets: Let $u_{1} u_{2} \in E, P_{1}$ a shortest $u_{1}-v$-path, P_{2} a shortest $u_{2}-v$-path. Then $W:=P_{1} \cup P_{2} \cup\left\{u_{1} u_{2}\right\}$ is a closed walk. If $u_{1}, u_{2} \in A$ or $u_{1}, u_{2} \in B$, then W is a closed odd walk, thus G contains an odd cycle, a contradiction. Thus, $\forall u_{1} u_{2}, u_{1}$ and u_{2} are in different parts A or B.

Definition 3. An Euler tour is a walk that visits every edge exactly once.
Theorem 4 (Euler tours). A connected graph has an Euler tour \Longleftrightarrow every vertex has even degree.

Proof. Use extremal principle with contradiction: Consider a longest walk W with non-repeating edges. Then show that it has to be closed and contain all edges, otherwise W was not maximal.

A connected graph has an Euler tour \Longleftrightarrow every vertex has even degree. Assume G is connected and has an Euler tour. Then by definition of the tour, there is an even number of edges incident to each vertex.

Assume G is connected with all vertices of even degree. Consider a walk $W:=$ $v_{0}, e_{0}, \ldots, v_{k}$ with non-repeated edges and having largest possible number of edges.
First, W has to be a closed walk: If $v_{0} \neq v_{k}, v_{0}$ is incident to an odd number of edges in W, a contradiction to W 's maximality.

Also, W contains all the edges of G : Otherwise, by G 's connectivity, there is an edge $e=v_{i} x$ of G that is incident to v_{i} and not contained in W. Then the walk $x, e, v_{i}, e_{i}, v_{i+1}, \ldots, v_{k}, e_{0}, v_{1}, e_{1}, \ldots, v_{i}$ is longer than W, a contradiction. Therefore, W is a closed walk containing all edges of G, an Euler tour.

2 Matchings

Theorem 5 (Hall's marriage theorem). G bipartite with sets A, B. G has a matching saturating $A \Longleftrightarrow|N(S)| \geq|S| \forall S \subseteq A$.

Proof. Do induction on $|A|$. Consider two cases:
Case 1: $|N(S)| \geq|S|+1 \forall S \subsetneq A$: Simply take out one edge and it's vertices, get a matching by induction hypothesis and add the edge to that matching. Case 2: $\exists A^{\prime} \neq \emptyset$, such that $\left|N\left(A^{\prime}\right)\right|=\left|A^{\prime}\right|:$ Consider $G^{\prime}:=G\left[A^{\prime} \cup N\left(A^{\prime}\right)\right]$. Again, get a matching by induction hypothesis and combine that with a matching in $G-G^{\prime}$, also by induction hypothesis.

Induction on $|A|$:
For $|A|=1$, the assertion is true. Let $|A| \geq 2$:
Case 1. $|N(S)| \geq|S|+1 \forall S \subsetneq A$.
Pick an edge $a b(a \in A, b \in B)$ and consider $G^{\prime}:=G-\{a, b\}$.
Every set $\emptyset \neq S \subseteq A \backslash\{a\}$ satisfies

$$
\left|N_{G^{\prime}}(S)\right| \geq\left|N_{G}(S)\right|-1 \geq|S|
$$

so by induction hypothesis G^{\prime} contains a matching of $A \backslash\{a\}$, so together with the edge $a b$, this is a matching of A .

Case 2. $\exists A^{\prime} \neq \emptyset$ with $B^{\prime}:=N\left(A^{\prime}\right)$ and $\left|B^{\prime}\right|=\left|A^{\prime}\right|$.
By induction hypothesis, $G^{\prime}:=G\left[A^{\prime} \cup B^{\prime}\right]$ contains a matching of A^{\prime}. But $G-G^{\prime}$ also satisfies the marriage condition: $\forall S \subseteq A \backslash A^{\prime}$ with $\left|N_{G-G^{\prime}}(S)\right|<$ $|S|$ we would have $\left|N_{G}\left(S \cup A^{\prime}\right)\right|<\left|S \cup A^{\prime}\right|$, contrary to our assumption.
Again, by induction, $G-G^{\prime}$ contains a matching of $A \backslash A^{\prime}$.
These two matchings result in a matching saturating A.
Theorem 6 (Kőnig's theorem). If G is bipartite, then the size of a largest matching is the same as the size of a smallest vertex cover.

Proof. A vertex cover contains at least one vertex of every edge of a matching, so $m \leq c$.
Define $U^{\prime}=\{b:$ an alternating path ends in $b\}$ and $U=U^{\prime} \cup\{a: a b \in$ $\left.E(M), b \notin U^{\prime}\right\}$. U is a vertex cover and $|U|=m$.

Let $G=A \dot{\cup} B$ and let c be the size of a smallest vertex cover and m the size of a largest matching. Since a vertex cover contains at least one vertex from every matching edge, $c \geq m$. To show $m \geq c$ consider a largest matching M and let
$U^{\prime}=\{b: a b \in E(M)$ for some $a \in A$ and some alternating path ends in $b\}$,

$$
U=U^{\prime} \cup\left\{a: a b \in E(M), b \notin U^{\prime}\right\}
$$

Note that $|U|=m . U$ is a vertex cover, i.e. every edge of G contains a vertex from U : If $a b \in E(M)$, then either a or b is in U. For $a b \notin E(M)$:

Case 0. $a \in U$. Done.
Case 1. a is not incident to M. Then $a b$ is an alternating path. b has to be incident to M, otherwise $M \cup\{a b\}$ is a larger matching, a contradiction.

Case 2. a is incident to M. Then $a b^{\prime} \in M$ for some b^{\prime}. Since $a \notin U, b^{\prime} \in U$, thus there is an alternating path P ending in b^{\prime}. If P contains b, then $b \in U$, otherwise $P b^{\prime} a b$ is an alternating path ending in b, so $b \in U$.

Theorem 7 (Tutte's theorem). G has a perfect matching $\Longleftrightarrow \forall S \subseteq V$ $q(G-S) \leq|S|$.
For a graph $G, q(G)$ denotes the amount of odd components of G.

3 Connectivity

Theorem 8 (Menger's theorem). The maximum number of A - B-paths in G is equal to the minimum number of vertices separating A from B.

Theorem 9 (Global version of Menger's theorem). G is k-connected \Longleftrightarrow $\forall a, b \in V$ there are k independent a - b-paths.

Theorem 10 (Ear decomposition). G is 2 -connected $\Longleftrightarrow G$ has an ear decomposition starting from any cycle in G.

Proof. Do induction over a given ear decomposition to show that it is 2connected. For the other implication, take a maximal subgraph obtained by an ear decomposition starting from a cycle C in G and show that it is induced and equal to G, both times contradicting its maximality if not.

Assume there is such an ear decomposition starting from C :

$$
C=G_{0} \subseteq G_{1} \subseteq \cdots \subseteq G_{k}=G
$$

Do induction on i:
$G_{0}=C$ is clearly 2-connected. If G_{i+1} contains a cut-vertex, it must be on the added ear. But deleting a vertex from the ear does not disconnect G_{i+1} since an ear is contained in a cycle.

Assume G is 2-connected and C is a cycle in G. Let $H=$ largest subgraph obtained by ear decomposition starting with C. H is induced subgraph of G, otherwise an edge with two vertices in $V(H)$ is an ear, contradicting H 's maximality.
Assume $H \neq G$. As G is connected, there is an edge $e=u v, u \in V(H), v \notin$ $V(H)$. Since $G-u$ is connected, consider a $v-w$-path P in $G-u$ for some $w \in V(H)-u$. Let w^{\prime} be the first vertex from $V(H)-u$ on P. Then $P w^{\prime} \cup u v$ is an ear of H, contradicting its maximality.

Definition 11 (Block). A maximal connected subgraph of G without a cut vertex is called a block of G.

Remark 12 (Blocks). B is a block of $G \Longleftrightarrow B$ is a bridge or a maximal 2-connected subgraph of G.

4 Planarity

Theorem 13 (Euler's formula).

$$
n-m+f=2,
$$

where $n=|G|, m=\| G| |=|E(G)|$ and f is the number of faces of G.
Proof. Fix n and do induction on m. If $m \leq n-1$, the graph is a tree.
Otherwise, consider $G^{\prime}:=G-e$ for an edge e that is contained in a cycle.

Note that e lies on the boundary of exactly two faces. Remove e and apply induction hypothesis.

Fix n and do induction on m.
For $m \leq n-1$, G is a tree and because $m=n-1$, we have $n-(n-1)+f=$ $1+1=2$.
So let $m \geq n$. Then G has an edge e in a cycle.
Let $G^{\prime}:=G-e$. Then e lies on the boundary of exactly two faces, f_{1}, f_{2}. One can show that $F\left(G^{\prime}\right)=F(G)-\left\{f_{1}, f_{2}\right\} \cup\left\{f^{\prime}\right\}$, where $f^{\prime}=f_{1} \cup f_{2} \backslash e$. Let $n^{\prime}, m^{\prime}, f^{\prime}$ be the number of vertices, edges and faces in G^{\prime}. Then we see that $n=n^{\prime}, m=m^{\prime}+1, f=f^{\prime}+1$. So, $n-m+f=n^{\prime}-m^{\prime}+f^{\prime}=2$.

Definition 14 (Minor). X is a minor of $G(X \preceq G, M X \subseteq G)$, if X can be obtained from G by successive vertex deletions, edge deletions and edge contractions.

Definition 15 (Topological minor). G is a single-edge subdivision of X, if $V(G)=V(X) \cup\{v\}$ and $E(G)=E(X)-x y+x v+v y$ for $x y \in E(X)$ and $v \notin V(X)$.
G is a subdivision of X, if it can be obtained from X by a series of single-edge subdivisions.
X is a topological minor of $G(T X \subseteq G)$, if a subgraph of G is a subdivision of X.

Theorem 16 (Kuratowski's theorem). G is planar $\Longleftrightarrow G \nsupseteq T K_{5}, T K_{3,3} \Longleftrightarrow$ $G \nsupseteq M K_{5}, M K_{3,3}$.

Definition 17 (Dual graph). The dual graph of a plane graph G has a vertex for every face of G. It has an edge, wherever two faces of G are separated by an edge (loops if the same face appears on both sides of an edge).

Theorem 18 (5-Color theorem). $\forall G$ planar: $\chi(G) \leq 5$.
Proof. Do induction on $|G|$.
Assume $|G|>5$ and G maximally planar, i.e. plane triangulation. Then by Euler's formula $\exists v: d(v) \leq 5$.
By induction there is a coloring c of $G-v$ using 5 colors. Assume c assigns 5 colors to $N(v)=\left\{v_{1}, \ldots, v_{5}\right\}$, in clockwise order, and $c\left(v_{i}\right)=i$.

If v_{1}, v_{3} or v_{2}, v_{4} are not linked by paths of colors only 1 and 3 or only 2 and 4, then v_{1} can be colored in 3 or v_{2} can be colored in 4. So assume there is a $v_{1}-v_{3}$-path only colored 1 and 3 and a $v_{2}-v_{4}$-path only colored 2 and 4. But then these paths must cross, a contradiction to the planarity of G.

Do induction on $|G|$.
If $|V(G)| \leq 5$, the result is trivial.
Assume $|G|>5$ and G is maximally planar, i.e. has a plane embedding that is a triangulation. Then by Euler's formula $\exists v: d(v) \leq 5$.
By induction there is a coloring c of $G-v$ using 5 colors. Assume c assigns 5 colors to $N(v)=\left\{v_{1}, \ldots, v_{5}\right\}$, in clockwise order, and $c\left(v_{i}\right)=i$.

Consider a subgraph induced by all vertices colored 1 or 3 :
v_{1} and v_{3} are in different components of that subgraph, we can switch colors 1 and 3 in the component of v_{1} and color v in 1 . So assume v_{1} and v_{3} are in the same component and there is a path connecting them, colored in 1 and 3 only.

Now consider a subgraph induced by all vertices colored 2 or 4:
If v_{2} and v_{4} are in different components of that subgraph, we can switch colors 2 and 4 in the component of v_{2} and color v in 2 . So assume not, then there is a path connecting them, colored in 2 and 4 only.

But this means, these two paths cross each other, contradicting the planarity of G.

Theorem 19 (5-List-Color theorem). $\forall G$ planar: $\chi_{l}(G) \leq 5$.
Proof. Prove a stronger statement:
Let G be an outer triangulation (max. planar) with two adjacent vertices x, y on the other triangle. Let $L: V(G) \rightarrow 2^{\mathbb{N}}$ be a list assignment, such that $|L(x)|=|L(y)|=1, L(x) \neq L(y),|L(z)|=3$ for any other vertex z on the outer face and $|L(z)|=5$ for every vertex not on the bounded face.
Then G is L-colorable.
Do induction on $|G|$ with an obvious basis for $|G|=3$. Consider an outer triangulation G on more than 3 vertices.

Case 1. There is a chord $u v$.
Let $G=G_{1} \cup G_{2}$, such that $\{u, v\}=V\left(G_{1}\right) \cap V\left(G_{2}\right),|G|>\left|G_{i}\right| \geq 3, G_{i}$
is an outer triangulation. W.l.o.g. x, y are on the outer face of G_{1}. Apply induction to G_{1} and obtain a proper L-coloring c^{\prime} of G_{1}. Then apply induction on G_{2} with u, v taking the roles of x, y and list assignments L^{\prime} such that $L^{\prime}(u)=\left\{c^{\prime}(u)\right\}, L^{\prime}(v)=\left\{c^{\prime}(v)\right\}, L^{\prime}(z)=L(z)$ for $z \notin\{x, y\}$. Then there is a proper L^{\prime}-coloring $c^{\prime \prime}$ of G_{2}. These colorings coincide on u and v, so together they form a proper coloring c of G, i.e. $c(v)=c^{\prime}(v)$ for $v \in V\left(G_{1}\right)$ and $c(v)=c^{\prime \prime}(v)$ for $v \in V\left(G_{2}\right)$.

Case 2. There is no chord.
Let z be a neighbor of x on the boundary of the outer face, $z \neq y$. Let Z be the set of neighbors of z not on the outer face. Let $L(x)=\{a\}, L(y)=\{b\}$. Let $c, d \in L(z)$ such that $c \neq a$ and $d \neq a$. Let $G^{\prime}=G-z$. Finally, let L^{\prime} be the list assignment for $V\left(G^{\prime}\right)$ such that $L^{\prime}(v)=L(v)-\{c, d\}$ for $v \in Z$ and $L^{\prime}(v)=L(v)$ for $v \notin Z$.
By induction, G^{\prime} has a proper L^{\prime}-coloring c^{\prime}. Extend c^{\prime} to a coloring c of G : Let $c(v)=c^{\prime}(v)$ if $v \neq z$. Let $c(z) \in\{c, d\} \backslash\left\{c^{\prime}(q)\right\}$ where q is the neighbor of z on the outer face, $q \neq x$. z then has a color different from each of its neighbors, so c is a proper L-coloring.

5 Colorings

Theorem 20 (Brook's theorem). Let G be a connected graph.
Then $\chi(G) \leq \Delta(G)$, unless G is a complete graph or an odd cycle.
Proof. Do induction on n. If G has a cut-vertex v, apply induction on $G_{1} \cup G_{2}=G$, where $\{v\}=V\left(G_{1}\right) \cap V\left(G_{2}\right),\left|G_{1}\right|,\left|G_{2}\right|<|G|$. This gives $\chi\left(G_{i}\right) \leq \Delta(G)$ and the colors can be permutated so that v has the same color in both colorings, resulting in a combined coloring of G.
If G has no cut-vertex and $\Delta(G) \geq 3$, then G is 2-connected.
Case 1. $\exists v: d(v) \leq \Delta-1$.
Order the vertices v_{i}, \ldots, v_{n}, such that $v=v_{n}$ and each v_{i} has a neighbor with larger index and color G greedily. At step i, there are at most $\Delta-1$ neighbors of v_{i} colored, so there is an avaiable color for v_{i}.
Case 2. $\forall v: d(v)=\Delta$.
Consider $x, y, z \in V$, s.t. $x y \notin E, x v, y v \in E$ and $G-\{x, y\}$ is connected. Order the vertices v_{i}, \ldots, v_{n}, such that $x=v_{1}, y=v_{2}, v=v_{n}$ and each v_{i} has a neighbor with larger index and color G greedily.
x and y get the same color and as in the first case, v_{i} can be colored. v_{n} has Δ colored neighbors, but $c(x)=c(y)$.

Induction on n . Assume $|G|>3$.
If G has a cut-vertex v, apply induction on G_{1}, G_{2}, s.t. $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$ and $\left|G_{1}\right|<|G|$ and $\left|G_{2}\right|<G$.
If each of G_{1}, G_{2} is not complete or an odd cycle, then $\chi\left(G_{i}\right) \leq \Delta\left(G_{i}\right) \leq$ $\Delta(G)$.
If G_{i} is complete or an odd cycle, $\Delta\left(G_{i}\right)<\Delta(G)$ and $\chi\left(G_{i}\right)=\Delta\left(G_{i}\right)+1 \leq$ $\Delta(G)$. By making sure that the color of v is the same in an optimal proper coloring of G_{1} and G_{2} we see that $\chi(G) \leq \Delta(G)$.

Note also that if $\Delta(G) \leq 2$, the theorem holds trivially, so we assume $\Delta(G) \geq 3$. Then G is 2 -connected.

Case 1. $\exists v: d(v) \leq \Delta-1$.
Order the vertices of $\mathrm{G} v_{1}, \ldots, v_{n}$, such that $v=v_{n}$ and each v_{i} has a neighbor with larger index. Color G greedily in this ordering.
At step i, there are at most $\Delta-1$ neighbors of v_{i} colored, so there is an available color for v_{i}.

Case 2. $\forall v: d(v)=\Delta$.
Consider vertices x, y, z, s.t. $x y \notin E$ and $x v, y v \in E$ and $G-\{x, y\}$ is connected. Order the vertices of G v_{1}, \ldots, v_{n}, such that $x=v_{1}, y=v_{2}$, $v=v_{n}$ and each $v_{i}(3 \leq i<n)$ has a neighbor with larger index. Color G greedily in this ordering.
v_{1} and v_{2} get the same color and as in the previous case, v_{i} has at most $\Delta-1$ colored neighbors $(3 \leq i<n)$, so it can be colored in the remaining color. At the last step, v_{n} has Δ colored neighbors, but two of them, v_{1}, v_{2} have the same color, so there are at most $\Delta=1$ colors used by neighbors of v_{n}. Thus v_{n} can be colored in the remaining color.

Lemma 21 (Greedy coloring). $\chi(G) \leq \Delta(G)+1$
Proof. For any connected graph G and any vertex v there is an ordering of the vertices of $G: v_{1}, \ldots, v_{n}$, such that $v=v_{n}$ and $\forall 1 \leq i<n v_{i}$ has a higher indexed neighbor:

Consider a spanning tree T of G and create a sequence of sets X_{1}, \ldots, X_{n-1} with $X_{1}=V, X_{i}=X_{i-1}-\left\{v_{i-1}\right\}$, where v_{i} is a leaf of $T\left[X_{i}\right]$ not equal to v. Then v_{1}, \ldots, v_{n} is a desired ordering.

Lemma 22 (Clique number and chromatic number). $\omega(G) \leq \chi(G)$.
Definition 23 (Perfect graphs). G is perfect $\Longleftrightarrow \omega(H)=\chi(H) \forall H \subseteq$ G, induced.

Theorem 24 (Weak perfect graph theorem). G is perfect $\Longleftrightarrow \bar{G}$ is perfect.
Theorem 25 (Strong perfect graph theorem). G is perfect $\Longleftrightarrow G$ has no odd hole (odd cycle on at least 5 vertices) or antihole (complement of an odd hole) as induced subgraph.

Theorem 26 (Vizing's theorem). $\chi^{\prime}(G) \in\{\Delta(G), \Delta(G)+1\}$
Theorem 27 (Kőnig's theorem). If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
Proof. $\chi^{\prime}(G) \geq \Delta(G)$, because the edges incident to a vertex of maximum degree require distinct colors.
For $\chi^{\prime}(G) \leq \Delta(G)$ do induction on $\|G\|$, with trivial base. Let $e=y t \in E$, then by induction c is a proper edge coloring of $G^{\prime}=G-e$ using colors from $\{1, \ldots, \Delta(G)\}$. As $d_{G^{\prime}}(x), d_{G^{\prime}}(y) \leq \Delta(G)-1$, there are color sets $\emptyset \neq \operatorname{Mis}(x), \operatorname{Mis}(y) \subseteq[\Delta(G)]$, s.t. no edge incident to v uses colors from $\operatorname{Mis}(v)$. Consider two cases:
Case 1: $\operatorname{Mis}(x) \cap \operatorname{Mis}(y) \neq \emptyset: \operatorname{Let} c(e) \in \operatorname{Mis}(x) \cap \operatorname{Mis}(y)$.
Case 2: $\operatorname{Mis}(x) \cap \operatorname{Mis}(y)=\emptyset:$ Let $\alpha \in \operatorname{Mis}(x), \beta \in \operatorname{Mis}(y)$. Consider a longest path P colored α and β starting at x. y is not a vertex in P, as it is not incident to β, and not the other endpoint of P because of parity. Switch colors α and β on P. Then we obtain a proper edge-coloring in which $\beta \in \operatorname{Mis}(x) \cup \operatorname{Mis}(y)$, which allows e to be colored β.
$\chi^{\prime}(G) \geq \Delta(G)$, because the edges incident to a vertex of maximum degree require distinct colors.

For the upper bound, $\chi^{\prime}(G) \leq \Delta(G)+1$, do induction on $\|G\|$. Base $\|G\|=1$ is trivial. Let G be a graph, $\|G\|>1$, assume that the assertion holds for all graphs with less edges.
Let $e=y t \in E$. By induction there is a proper edge coloring c of $G^{\prime}=G-e$ using colors from $\{1, \ldots, \Delta(G)\}$.

In G^{\prime} both x and y are incident to at most $\Delta(G)-1$ edges. Thus there are color sets $\emptyset \neq \operatorname{Mis}(x)$, $\operatorname{Mis}(y) \subseteq[\Delta(G)]$, where $\operatorname{Mis}(v)$ is the set of "missing" colors, i.e. colors not used on edges incident to v.

Case 1. $\operatorname{Mis}(x) \cap \operatorname{Mis}(y) \neq \emptyset$: Let $\alpha \in \operatorname{Mis}(x) \cap \operatorname{Mis}(y)$, color e with α. This gives $\chi^{\prime}(G) \leq \Delta(G)$.

Case 2. $\operatorname{Mis}(x) \cap \operatorname{Mis}(y)=\emptyset:$ Let $\alpha \in \operatorname{Mis}(x)$ and $\beta \in \operatorname{Mis}(y)$. Consider a longest path P colored α and β starting at x. Because of parity, P does not end in y, and because y is not incident to β, y is not a vertex on P. Switch colors α and β on P. Then we obtain a proper edge-coloring in which $\beta \in \operatorname{Mis}(x) \cup \operatorname{Mis}(y)$, which allows e to be colored β. Thus $\chi^{\prime}(G) \leq \Delta(G)$.

Definition 28 (List-colorable, List-chromatic-number). Let $L(v) \subseteq \mathbb{N}$ be a list of colors for each vertex $v \in V$.
G is L-list-colorable if there is a coloring $c: V \rightarrow \mathbb{N}$ such that $c(v) \in L(v)$ $\forall v \in V$ and adjacent vertices have different colors.
G is k-list-colorable, if G is L-list-colorable for every L with $L(v)=k$ for every $v \in V$.
$\chi_{l}(G)$ is the smallest k such that G is k-list-colorable.

6 Flows

Theorem 29 (Ford-Fulkerson theorem). Let $N=(G, s, t, c)$ be a network. Then

$$
\max \{|f|: f \text { is an N-flow }\}=\min \{c(S, \bar{S}):(S, \bar{S}) \text { is a cut }\}
$$

Also, there is an integral flow $f: T \rightarrow \mathbb{Z}_{\geq 0}$ with this maximum flow value.

7 Substructures in dense graphs

Definition 30. Extremal number The extremal number ex (n, H) is defined as $\max \{||G||:|G|=n, G \nsupseteq H\}$.
$\operatorname{EX}(n, H):=\{G:\|G\|=\operatorname{ex}(n, H),|G|=n, G \nsupseteq H\}$ is the set of H-free graphs on n vertices with ex (n, H) edges.

Definition 31 (Turán graph). The Turán graph $T(n, r)$ is the unique complete r-partite graph of order n whose partite sets differ by at most 1 in size. It does not contain K_{r+1}.
Notation: $t(n, r)=\|T(n, r)\|$. If $n=r * s, T(n, r)$ is also denoted by K_{r}^{s}.
Theorem 32 (Turán's theorem). Any graph G with n vertices, ex $\left(n, K_{r}\right)$ edges and $K_{r} \nsubseteq G$ is a $T_{r-1}(n)$.
In other words, $\operatorname{EX}\left(n, K_{r}\right)=\{T(n, r-1)\}$.
Remark 33 (Binomial coefficient).

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Theorem 34 (Erdős-Stone-Simonovits). For any graph H and for any fixed $\epsilon>0$, there is n_{0} such that for any $n \geq n_{0}$,

$$
\left(1-\frac{1}{\chi(H)-1}-\epsilon\right)\binom{n}{2} \leq \operatorname{ex}(n, H) \leq\left(1-\frac{1}{\chi(H)-1}+\epsilon\right)\binom{n}{2} .
$$

Definition 35 (ϵ-regularity). Let $\|X, Y\|$ denote the number of edges between X and Y. Then the density $d(X, Y)$ between X, Y is defined as $d(X, Y)=\frac{\|X, Y\|}{|X \| Y|}$.

For $\epsilon>0$, the pair (X, Y) is ϵ-regular, if $|d(X, Y)-d(A, B)| \leq \epsilon$ for all $A \subseteq X, B \subseteq Y$ with $|A| \geq \epsilon|X|$ and $|B| \geq \epsilon|Y|$.

An ϵ-regular partition of G is a partition $V=V_{0} \dot{U} \ldots \dot{U} V_{k}$ such that:

1. $\left|V_{0}\right| \leq \epsilon|V|$,
2. $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{k}\right|$,
3. All but at most ϵk^{2} of the pairs $\left(V_{i}, V_{j}\right)$ are ϵ-regular.

8 Substructures in sparse graphs

Conjecture 36 (Hadwiger's conjecture). $\chi(H)=r \Rightarrow H \supseteq M K_{r}$

9 Ramsey theory

Definition 37 (Ramsey number). The Ramsey number $R(k)$ is the smallest $n \in \mathbb{N}$, such that every 2-edge-coloring of K_{n} contains a monochromatic K_{k}.

The asymetric Ramsey number $R(k, l)$ is the smallest $n \in \mathbb{N}$, such that every red-blue edge-coloring of K_{n} contains a red K_{k} or a blue K_{l}.

The graph Ramsey number $R(G, H)$ is the smallest $n \in \mathbb{N}$, such that every red-blue edge-coloring of K_{n} contains a red G or a blue H.

The hypergraph Ramsey number $R_{r}\left(l_{1}, \ldots, l_{k}\right)$ is the smallest $n \in \mathbb{N}$, such that for every k-coloring of $\binom{[n]}{r}$, there is an $i \in[k]$ and a $V \subseteq[n]$ with $|V|=l_{i}$, such that all sets in $\binom{V}{r}$ have color i.

Remark 38 (On proving graph Ramsey numbers). For the lower bound, construct a coloring that doesn't contain the red or blue subgraph.
For the upper bound, given a coloring, show that either the blue or the red subgraph can be found.

Theorem 39 (Ramsey). For any $k \in \mathbb{R}$ we have $\sqrt{2}^{k} \leq R(k) \leq 4^{k}$.
Proof. For the lower bound, use the probabilistic method, by constructing a coloring of $K_{2^{k / 2}}$. Then show that the probability of a monochromatic k-clique is less than 1.
For the upper bound, consider an edge-coloring of $G=K_{4^{k}}$ in red and blue.
Let x_{1} be an arbitrary vertex and $X_{1}=V$. Then let X_{i+1} be the largest monochromatic neighborhood of x_{i} in X_{i} and call its color c_{i}. Then let x_{i+1} an arbitrary vertex of X_{i+1}. Note that $\left|X_{i+1}\right| \geq\left\lceil\frac{\left|X_{i}-1\right|}{2}\right\rceil \geq 4^{k} / 2^{i}$. Thus $\left|X_{i}\right|>0$ as long as $i \leq 2 k$. Of $c_{1}, \ldots, c_{2 k-1}$, at least k are the same by pigeonhole principle. The vertices belonging to that color induce a monochromatic k-vertex clique.

For the upper bound, consider an edge-coloring of $G=K_{4^{k}}$ in red and blue. Construct a sequence of vertices $x_{1}, \ldots, x_{2 k}$, a sequence of vertex sets $X_{1}, \ldots, X_{2 k}$ and a sequence of colors $c_{1}, \ldots, c_{2 k-1}$ as follows:
Let x_{1} be an arbitrary vertex and $X_{1}=V(G)$.
Let X_{i+1} be the largest monochromatic neighborhood of x_{i} in X_{i}, call this
color c_{i}. Let x_{i+1} be an arbitrary vertex in X_{i+1}.
We see that $\left|X_{i+1}\right| \geq\left\lceil\frac{\left|X_{i}-1\right|}{2}\right\rceil \geq 4^{k} / 2^{i}$. Thus $\left|X_{i}\right|>0$ as long as $2 k>(i-1)$, i.e. as long as $i \leq 2 k$. Consider vertices $x_{1}, \ldots, x_{2 k}$ and colors $c_{1}, \ldots, c_{2 k-1}$. At least k of these colors, say $c_{i 1}, \ldots, c_{i k}$ are the same by pigeonhole principle, say red. Then $x_{i 1}, \ldots, x_{i k}$ induce a k-vertex clique with all edges being red.

For the lower bound, construct a coloring of $K_{n}, n=2^{k / 2}$ with no monochromatic clique of size k. Color each edge red with probability $\frac{1}{2}$, otherwise blue. Let S be a fixed set of k vertices. Then

$$
\operatorname{Prob}(S \text { induces a red clique })=2^{-\binom{k}{2}} .
$$

So $\operatorname{Prob}(S$ induces a monochromatic clique $)=2^{-\binom{k}{2}+1}$. Thus
$\operatorname{Prob}(\exists$ monochromatic clique on k vertices $) \leq\binom{ n}{k} 2^{-\binom{k}{2}+1}$

$$
\leq \frac{n^{k}}{k!} 2^{-k^{2} / 2+k / 2+1} \leq \frac{2^{k / 2+1}}{k!}<1
$$

10 Hamiltonian Cycles

Definition 40 (Hamiltonian cycle). A Hamiltonian cycle is a cycle that visits every vertex exactly once.

Theorem 41 (Dirac's theorem). If $|G|=: n \geq 3$ and $\delta(G) \geq n / 2$, then G has a Hamiltonian cycle.

Proof. G is connected, as $\delta \geq n / 2$. Consider a longest path $P=\left(v_{0}, \ldots, v_{k}\right)$ and note that $N\left(v_{0}\right), N\left(v_{k}\right) \subseteq V(P)$. Show by pigeonhole principle that there is a cycle C on $k+1$ vertices. If $k+1=n, C$ is a Hamiltonian cycle. If not, then there is a vertex $v \notin V(C)$ that is adjacent to a vertex of C as G is connected. Then v and C induce a path on $k+2$ vertices, contradicting the maximality of P.
G is connected, otherwise the smallest component has vertices of degree at most $n / 2-1$, a contradiction.
If $P=\left(v_{0}, \ldots, v_{k}\right)$ is a longest path, then $N\left(v_{0}\right), N\left(v_{k}\right) \subseteq V(P)$.
There is a cycle C on $k+1$ vertices in G :
Either by pigeonhole principle $v_{0} v_{k} \in E(G)$, as $\left|N\left(v_{0}\right)\right|,\left|N\left(v_{k}\right)\right| \geq n / 2$ and $k \leq n-1$, or $\exists i$ such that $v_{0} v_{i+1}, v_{i} v_{k} \in E(G)$.

If $k+1=n, C$ is a Hamiltonian cycle and we are done.
If $k+1<n$, since G is connected, there is a vertex $v \notin V(C)$ adjacent to a vertex in C. Then v and C induce a graph that contains a spanning path, i.e. a path on $k+2$ vertices, a contradiction to the maximality of P.

11 Random graphs

Definition 42 (Erdős-Rényi model of random graphs). $\mathcal{G}(n, p)$ is the probability space on all n-vertex graphs that results from independently deciding whether to include each of the $\binom{n}{2}$ possible edges with fixed probability $p \in[0,1]$.

A property \mathcal{P} is a set of graphs, e.g. $\mathcal{P}=\{G: G$ is k-connected $\}$.
Let $\left(p_{n}\right) \in[0,1]^{\mathbb{N}}$ be a sequence. We say that $G \in \mathcal{G}\left(n, p_{n}\right)$ almost always has property \mathcal{P} if $\operatorname{Prob}\left(G \in \mathcal{G}\left(n, p_{n}\right) \cap \mathcal{P}\right) \rightarrow 1$ for $n \rightarrow \infty$. If furthermore $\left(p_{n}\right)$ is constant p, we also say that almost all graphs in $\mathcal{G}(n, p)$ have property \mathcal{P}.

A function $f: \mathbb{N} \rightarrow[0,1]$ is a threshold function for a property P if:

- For all $\left(p_{n}\right) \in[0,1]^{\mathbb{N}}$ with $p_{n} / f(n) \xrightarrow{n \rightarrow \infty} 0$ the graph $G \in \mathcal{G}\left(n, p_{n}\right)$ almost always does not have property \mathcal{P}.
- For all $\left(p_{n}\right) \in[0,1]^{\mathbb{N}}$ with $p_{n} / f(n) \xrightarrow{n \rightarrow \infty} \infty$ the graph $G \in \mathcal{G}\left(n, p_{n}\right)$ almost always does have property \mathcal{P}.

Not all properties have a threshold function.
Lemma 43. Let $G \in \mathcal{G}(n, p), S \subseteq V(G)$ and H a fixed graph on m edges and vertex set S. Then

$$
\left.\operatorname{Prob}(G[S]=H)=p^{m}(1-p)^{(|S|}{ }_{2}^{|S|}\right)-m \text { and } \operatorname{Prob}(H \subseteq G[S])=p^{m}
$$

Lemma 44. Let $G \in \mathcal{G}(n, p)$, let H be a fixed graph. Then

$$
\operatorname{Prob}(H \underset{i n d}{\subseteq} G) \xrightarrow{n \rightarrow \infty} 1
$$

Lemma 45. Let $n \geq k \geq 2, G \in \mathcal{G}(n, p)$. Then

$$
\operatorname{Prob}(\alpha(G) \geq k) \leq\binom{ n}{k}(1-p)^{\binom{k}{2}} \text { and } \operatorname{Prob}(\omega(G) \geq k) \leq\binom{ n}{k} p^{\binom{k}{2}}
$$

Theorem 46 (Erdős). For any $k \geq 2$ there is a graph G on $\sqrt{2}^{k}$ vertices such that $\alpha(G)<k$ and $\omega(G)<k$. This implies $R(k, k) \geq 2^{k / 2}$.

Proof. Let $n=\sqrt{2}^{k}$ and consider $G \in \mathcal{G}(n, 1 / 2)$. Then
$\mathbb{P}((\alpha(G) \geq k) \vee(\omega(G) \geq k)) \leq \mathbb{P}(\alpha(G) \geq k)+\mathbb{P}(\omega(G) \geq k) \leq 2^{-\binom{k}{2}+1}<1$.
Thus $\mathbb{P}((\alpha(G)<k) \wedge(\omega(G)<k))>0$, so there is a graph G such that $\alpha(G)<k$ and $\omega(G)<k$.

Theorem 47 (Erdős-Hajnal). For any integer $k \geq 3$ there is a graph G with $\operatorname{girth}(G)>k$ and $\chi(G)>k$.

[^0]: ${ }^{1}$ Reinhard Diestel. Graph theory. Fifth edition. Graduate texts in mathematics ; 173. Berlin; [Heidelberg]: Springer, [2017]. ISBN: 9783662536216; 3662536218.

