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1 Introduction

The term mechanistic model describes a model that is based on fundamental laws of the
natural sciences. A benefit of such models is that their variables have an actual meaning,
allowing for easier interpretation.

In the domain of mRNA degradation, one fundamental law describes the way an mRNA
interacts with its degradation factors. A degradation factor is an RNA-binding protein, also
called RBP, that contributes to the degradation of a bound RNA molecule.

A simplified version of this law states that the half-life of an mRNA, considering only
a single degradation factor, is inversely proportional to its binding probability with this
degradation factor, multiplied by the concentration of both molecules in some medium. In
this equation, the two concentrations measure how likely it is that the two molecules collide,
while the binding probability defines the conditional probability of an actual interaction upon
collision. There is a variety of degradation factors that could possibly interact with a single
mRNA molecule and influence its lifespan, so this simple law has to be applied for every
single degradation factor and the results have to be aggregated.

Of course, there are other influences on mRNA half-life as well, but in this chapter, we will
focus on this simplification.

In the following, we will fit, evaluate and interpret mechanistic models that try to exploit
this relationship between RBPs and mRNA half-life.

The desired result of this approach is not so much a model with particularly high prediction
capabilities, but rather to gain some insights about biological phenomena by interpreting
the models. With respect to the tissue-specific data we’re working with, interpretation could
lead to the discovery of varying concentrations of different RNA-binding proteins in different
tissue types.
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2 Intuition

The previously described relationship between an RBP and mRNA half-life can be derived as
follows.

Let {mRNAi} be a set of different mRNA’s and {DFj} a set of different degradation factors.
The interaction of an mRNAi with a degradation factor DFj can then be described as

mRNAi + DFj
rij−→ ∅i + DFj,

where the reaction rate rij is given as

rij = κij · CmRNAi · CDFj .

Here, κij is a factor proportional to the binding probability of mRNAi and DFj, i.e. a binding-
score of those two molecules, CmRNAi is proportional to the concentration of the mRNA
molecule mRNAi and CDFj is proportional to the concentration of the degradation factor DFj
in the medium.

Leaving aside other influences for this simplification, the half-life of a fixed mRNA molecule
mRNAi is determined by all the rij’s in combination:

mRNAi + DF1
ri1−→ ∅i + DF1 · · · mRNAi + DFn

rin−→ ∅i + DFn.

Let φij = κij · CDFj and note that rij = φij · CmRNAi . Then, φi = ∑j φij leads to the simplified
chemical equation

mRNAi
φi−→ ∅i,

where 1
φi

is proportional to the half-life of mRNAi.

This equation can now be set up for each individual mRNAi in different tissue types and
we can build models that incorporate this relationship into their structure.

After fitting these models to the available tissue-specific half-life data, we can then in turn
extract the fitted coefficients to learn about the predicted concentration of different DFj’s, or
more generally speaking of different RNA-binding proteins, across different tissue types.

2.1 Model Structure

As our fundamental modeling approach, we choose linear regression, as this type of modeling
allows for easy interpretation by comparing the absolute values of the learned coefficients.
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2 Intuition

We define different model types by the range of features they’re fitted on. For example,
there will be a baseline model which is fitted on codon frequencies only, and there will be
another model which will only incorporate RBP binding-scores as features, thus realizing
the mechanistic approach outlined above. For each model type, there will be one linear
regression model per type of tissue and we will evaluate several of these model bundles using
cross-validation to test out different regularization hyperparameters. In the end, the models
from the best-performing cross-validation fold will constitute the final bundle of models per
model type.

In this section, we will outline and derive the model structure of the purely mechanistic
model, which we will later define as Model 2.

Based on the previously derived equation, the general structure of this linear model will be
the following:

κi1 · CDF1 = φi1 · · · κin · CDFn = φin.

Since we don’t know the exact split of the summed values φi into the separate summands
φij, we reformulate these equations into a single matrix equation. For this, note that

φi = ∑
j

φij = ∑
j

κij · CDFj ⇒
[
κi1 . . . κin

]
·

CDF1
...

CDFn

 = φi,

which leads to  κ11 . . . κ1n
...

κN1 . . . κNn

 ·

CDF1
...

CDFn

 =

 φ1
...

φN

 .

This matrix equation constitutes a linear regression model, where the κij matrix contains the
input data (in this case each row contains the binding-scores of one mRNAi with every DFj),
the CDFj vector contains the learned coefficients and the φi vector constitutes the outcome
variables.

The structure of this model will allow us to extract meaningful information, i.e. the learned
CDFj coefficients, from a fitted model. These coefficients should predict a tissue-specific
measure of concentration of the degradation factors DFj.
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3 Preparations

In order to fit the regression models for different tissue types, we rely on the data set
containing relative measures of half-life per mRNA and tissue.

As mentioned above, different model types will be defined by the types of features they’re
being fit on. But a distinction between feature categories is important not only for fitting
different models on different categories of features, but also with regard to interpreting the
models coefficients later on. In order to correctly assess the influence of a single feature on
the output of a model relative to the other features, one has to consider the magnitude of
input values of different features. Therefore, we plot a separate heatmap per feature category
to not lose sight of important features which happen to have inputs with lower magnitude.

The feature categories we are considering are: codon frequencies; RBP binding-scores as
obtained from DeepRiPE (see [1]); CDS, 5’UTR and 3’UTR sequence length in the log scale
and CDS, 5’UTR and 3’UTR GC-content.

3.1 Outcome Variables

The outcome variables φi are a measure of relative half-life per tissue, compared to half-life
in all tissues. There is one such outcome variable for every mRNAi in every tissue type.

3.2 Cross-Validation on Chromosomes

In order to evaluate our models for different regularization hyperparameters, we define
cross-validation folds.

It is important to note that genes which lie on the same chromosome are often more similar
than genes from different chromosomes. In order to avoid artificially increasing our models
prediction accuracy on the test set, we don’t split the data into training and test sets randomly,
but instead adhere to the policy of only distributing the complete data from a chromosome to
either set.

Folds are then chosen to result in a train/test split of 80/20, including a tolerance of 2
percentage points in both directions, in order to make the chromosome distribution policy
work. The test sets of all folds are also mutually exclusive.
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3 Preparations

3.3 Ridge Regularization

In some of our models, we’re supplying codon frequencies as features. This poses a problem,
as codon frequencies are in general highly correlated and thus can lead to model coefficients
that are poorly determined and exhibit high variance. This problem can be alleviated by ap-
plying ridge regularization, as this regularization technique imposes a penalty on coefficient
size (see also [2]). The strength of this regularization is determined by a hyperparameter
which we call α.

The tested hyperparameters across all models are α = 0, 10−5, 5 · 10−5, 10−4, 5 · 10−4, 0.001,
0.005, 0.01 and 0.05.
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4 Model Types

All model types are fitted with relative measures of half-life as outcome variables and only
differ in what they take as input.

The baseline model, called “Model 1” solely considers codon frequencies as features and
“Model 2” considers solely RBP binding-scores. These two feature categories are combined in
“Model 3”, which is fit on codon frequencies as well as RBP binding-scores. In the final model,
“Model 4”, the sequence lengths of the CDS, 5’UTR and 3’UTR, as well as their GC-content,
are supplied as additional features.

Table 4.1 reports on the best performing models of each type. The aggregated R2 values
were calculated across all different tissue types. A more detailed visualization of achieved R2

values per tissue type can be found in the appendix.
The model types consistently improved by providing more features. Figure 4.1 compares

the performance of the final model with the performance achieved in the baseline model.
Similar comparisons for Model 2 and 3 can be found in the appendix as well.

Model Feature Categories α Mean R2 Max R2

Model 1 C 5 · 10−5 0.032555 0.110555
Model 2 R 0.005 0.034458 0.123484
Model 3 C, R 5 · 10−5 0.048725 0.141194
Model 4 C, R, E 0.0001 0.055069 0.149735

Table 4.1: Results of fitting the different model types. The feature categories are defined as C
for codon frequencies, R for RBP binding-scores and E for extra features.

4.1 Model Interpretation

The goal of interpreting the models is to extract some information about the relative concen-
tration of various RBPs in different types of tissue.

By plotting the coefficients of different features (extracted from the tissue-specific models
in the best-performing fold) for every tissue type, we can gain insight into the influence of
these features on mRNA half-life in different tissues. According to the mechanistic model
we introduced, especially the learned parameters of RBP binding-scores are of interest, as
they might correlate with a mixture of RBP concentration and influence of the specific RBP
on mRNA half-life per tissue. By examining the coefficients of these features with the highest
absolute value, and especially comparing their influence across tissues, we can try to predict
the concentration and influence of the RBPs on mRNA half-life in different tissues.
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4 Model Types

Figure 4.1: Comparing the achieved R2 scores per tissue type in the final model with the
respective scores in the baseline model.

We visualize the models coefficients in several heatmaps, which can be found in the
appendix. The heatmap of Model 2, containing only the RBP binding-scores as features, is
shown in figure 4.2. Every horizontal line which is either of bright or dark color highlights a
consistent positive or negative influence of a certain feature across tissue types.
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4 Model Types
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5 Conclusion

Based on the plotted heatmaps, we made several predictions of which RBPs could be more
prevalent in specific tissue types than in others. By browsing the TISSUES Tissue Expression
Database1, we can now check these predictions against the biological literature and experimen-
tal data. The TISSUES database offers confidence scores ranging from 1 to 5 for the expression
of genes in different tissue types. It employs different sources for tissue associations of
genes, namely Knowledge, which is manually curated knowledge from UniProtKB (see [4]),
Experiments and Text mining. In the process of validating our predictions, only the Knowledge
and Experiments scores were considered and listed. The summary of this validation is listed
in table 5.1.

RBP Tissue Score (K) Score (E)

NUDT21 Brain 4/5 5/5
FXR2 Brain 4/5 5/5

CPSF3 Brain 4/5 5/5
EWSR1 Brain 4/5 5/5
MOV10 Brain 4/5 4/5

FMR1iso1 Brain 4/5 3/5
TARDBP Brain 4/5 3/5
ELAVL2 Brain 4/5 2/5

CAPRIN1 Brain – 5/5
CPSF6 Brain – 4/5
CPSF1 Brain – 3/5

IGF2BP1 Brain – –
CAPRIN1 Liver 4/5 3/5

CPSF6 Heart 4/5 2/5
CPSF7 Skin – 2/5
RBM20 Skin – –
ELAVL4 Skin – –

Table 5.1: Table of all predicted RBP concentrations with their respectively predicted tissue
types. Score (K) represents the TISSUES confidence score in the category Knowledge
and Score (E) represents the experimental confidence score.

Most predictions of increased concentration of RBPs in specific tissue types are supported
by the literature. These results lead to the conclusion that by expanding the applied technique

1https://tissues.jensenlab.org/About, see also [3].
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5 Conclusion

on other RBPs and by obtaining more predictions from the heatmaps or via other approaches,
e.g. extracting predictions using absolute coefficient values per tissue or considering p-values,
might result in the discovery of previously unknown expression patterns of RBPs in different
tissue types.
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6 Appendix

Figure 6.1: Achieved R2 values on test set for different tissues in Model 1.
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6 Appendix

Figure 6.2: Achieved R2 values on test set for different tissues in Model 2.
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6 Appendix

Figure 6.3: Comparing the achieved R2 scores per tissue type in Model 2 with the respective
scores in the baseline model.
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6 Appendix

Figure 6.4: Achieved R2 values on test set for different tissues in Model 3.
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6 Appendix

Figure 6.5: Comparing the achieved R2 scores per tissue type in Model 3 with the respective
scores in the baseline model.
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6 Appendix

Figure 6.6: Clustered heatmap visualizing coefficients of RBP binding-scores in Model 3.
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6 Appendix

Figure 6.7: Achieved R2 values on test set for different tissues in Model 4.
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6 Appendix

Figure 6.8: Clustered heatmap visualizing coefficients of RBP binding-scores in Model 4.
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