Security Review

Niklas Bühler

Summerterm 2020

Contents

1	Gen	eral	4		
2	Sym	nmetric Encryption	4		
	2.1	One-Time-Pad (OTP)	4		
	2.2	Stream ciphers	4		
	2.3	Block ciphers	4		
		2.3.1 Operating modes	4		
	2.4	Data Encryption Standard (DES)	5		
	2.5	2DES	5		
	2.6	3DES	7		
	2.7	Advanced Encryption Standard (AES)	7		
	2.8	Linear Cryptanalysis	7		
	2.9	Differential Cryptanalysis	7		
	2.10	Semantic Security	7		
	2.11	Passive Security: IND-CPA	8		
3	Hash Functions				
	3.1	Goals	8		
	3.2	Requirements for a hash function	8		
	3.3	Collision Resistance (informal)	8		
	3.4	Trivial Collisionfinder (Brute Force)	8		
	3.5	Security Parameter: Asymptotic Definition	Ö		
	3.6	Collision Resistance (formal)	ç		
	3.7	One-way function	ç		
	3.8	Theorem: Collision Resistance \Rightarrow One-way property	ç		
	3.9	Merkle-Damgård Construction	Ö		
	3.10	Theorem: F collision resistant $\Rightarrow H_{MD}$ collision resistant	10		
4	Sym	nmetric Authentication of Messages	10		
4	•				
4	4.1	MACs	10		
4	$4.1 \\ 4.2$	MACs			

	4.4	Preudorandom function PRF	11
	4.5	Creating PRF candidates from hashfunctions	11
	4.6	Theorem: MACs from PRFs and hashfunctions	11
	4.7	HMAC	12
	4.8	CBC-MAC: MAC from CBC-Mode	12
5	Asy	emmetric Encryption (Public Key)	12
	5.1	RSA	12
		5.1.1 RSA Key Generation	13
		5.1.2 Correctness of RSA	13
	5.2	Semantic Security for Public Key Procedures	13
	5.3	IND-CPA for Asymmetric Encryption	14
	5.4	Security of RSA	14
	5.5	RSA Padding	14
	5.6	ElGamal	14
6	Asy	mmetric Authentification of Messages	15
	6.1	Security: EUF-CMA definition as with MACs	15
	6.2	RSA as a Signing Scheme	15
	6.3	RSA-PSS: "Probabilistic Signature Scheme"	15
	6.4	ElGamal Signatures	15

Preface

This is a summary of the most important definitions, theorems and some proofs for the Security lecture at KIT. It is based on the lectures by Prof. Müller-Quade in summer term 2020.

General 1

• Concept of CIA: Confidentiality, Integrity, Availability

Symmetric Encryption

One-Time-Pad (OTP) 2.1

- Length of key is equal to length of message; $M, K \in \{0, 1\}^n$
- Encoding: $E(K, M) = C = M \oplus K \in \{0, 1\}^n$
- Decoding: $D(K,C) = C \oplus K = M$
- Important: K has to be chosen at random, uniformly distributed
- \oplus Given C, every possible M is equiprobable
- ⊖ The key is bulky, may not be reused
- \ominus Ciphertext is malleable: $C \oplus K = (M \oplus X) \oplus K$

2.2Stream ciphers

- Idea: Simulate OTP with short $K \in \{0,1\}^k, (k < n)$
- Expand K to $K' := G(K) \in \{0,1\}^n$, then perform OTP using K'
- Goal: pseudorandom number G(K) should "look" truly random
- \oplus Fast, especially in hardware
- ⊕ Established construction using multiple linear-feedback shift registers (LFSRs)
- ullet \ominus Oftentimes algebraic attacks possible
- \ominus Requires synchronization for updating key
- ⊖ Ciphertext is malleable, like in OTP

2.3 Block ciphers

- $\begin{array}{l} \bullet \ E: \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^l, (K,M) \mapsto C \\ \bullet \ D: \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^l, (K,C) \mapsto M \end{array}$
- Correctness: $\forall K, M : D(K, E(K, M)) = M$

Operating modes

2.3.1.1 Electronic Codebook Mode (ECB)

- Idea: Split M into l-bit blocks $M_1, \dots \in \{0,1\}^l$ and let $C := (C_1, \dots)$ with $C_i := E(K, M_i) \in \{0, 1\}^l$, decryption works analog
- \oplus Easy to implement, no synchronization required
- \ominus Same M, same C; Insertions or different order possible
- \ominus Bit error in C_i destroys block M_i

2.3.1.2 Cipher Block Chaining Mode (CBC)

• Problem with ECB: cipher blocks are independent \Rightarrow chain them

- Split M into l-bit blocks M_1, \ldots
- Let $C_0 := IV$ (initialization vector)
- Let $C_i := E(K, M_i \oplus C_{i-1})$
- Decoding: $M_i := D(K, C_i) \oplus C_{i-1}$
- IV has to be transmitted as well, or be a constant
- \bullet \oplus Solves some disadvantages of the ECB: Same message blocks don't result in the same cipher blocks anymore, arranging the cipher blocks in a different order is also not possible anymore
- \bullet \ominus Not parallelizable
- ullet \ominus Cipher text is malleable
- \ominus Bit error in C_i at position j destroys block M_i and flips bit j in M_{i+1}

2.3.1.3 Counter Mode (CTR)

- Similar to stream ciphers
- $C_0 := IV, C_i := E(K, IV + i) \oplus M_i$
- Similar properties to CBC (but can be parallelized better)
- Also allows homomorph malleability
- \Rightarrow Use Galois Counter Mode (GCM), which is authenticated

2.3.1.4 Roundup

- Block ciphers use encription E in blocks
- ECB: "raw" E-function \Rightarrow don't use
- CBC, CTR: better, but only secure against eavesdropping
- GCM: best choice

2.4 Data Encryption Standard (DES)

- Uses Feistel cipher
- Round function F is non-invertable, but E is
- Structurally unbroken (but key is too short)
- Input- and output-permutation are inverse, so $IP = FP^{-1}$
- Decryption uses same Feistel cipher, but F-keys are used in reverse

2.5 2DES

- $K := (K_1, K_2) \in (\{0, 1\}^{56})^2$
- $E_{2DES}(K, M) := E_{DES}(K_2, E_{DES}(K_1, M))$
- Not really more secure than DES
- Meet-in-the-middle attack
 - Given: $M, C = E_{2DES}(K, M)$
 - Goal: $K = (K_1, K_2)$
 - 1. Calculate list of all $C_{K'_1} := E_{DES}(K'_1, M)$
 - 2. Sort list lexicographically (for binary search)
 - 3. Calculate $C_{K_2} := D_{DES}(K'_2, C)$ successively
 - 4. If $C_{K'_2} = C_{K'_1}$, output (K'_1, K'_2)

Figure 1: Feistel cipher

2.6 3DES

- Because DES and 2DES are not secure
- $K := (K_1, K_2, K_3) \in (\{0, 1\}^{56})^3$
- $E_{3DES}(K, M) := E_{DES}(K_3, D_{DES}(K_2, E_{DES}(K_1, M)))$
- Meet-in-the-middle attack has complexity $\sim 2^{112}$

2.7 Advanced Encryption Standard (AES)

- No Feistel cypher
- According to present knowledge secure

2.8 Linear Cryptanalysis

- Find \mathbb{F}_2 -linear dependencies in bits of X and Y := E(K, X)
 - Enables indirect attack on Feistel cypher (n rounds):
 - 1. Find linear dependency in F-input and -output
 - 2. Expand dependency on first n-1 rounds
 - 3. Complete search for last round key $K^{(n)}$
 - 4. Check $K^{(n)}$ candidate using linear dependency
 - 5. If $K^{(n)}$ is found, search for $K^{(n-1)}$, $K^{(n-2)}$, ...

2.9 Differential Cryptanalysis

- Consider differences in output $\Delta_{out} := Y \oplus Y'$ in dependence to differences in input $\Delta_{in} := X \oplus X'$
- Attack on Feistel cypher similar to linear cryptanalysis:
 - 1. Find most probable pairs $\Delta_{in} \Rightarrow \Delta_{out}$ from input and output of second last round
 - 2. Complete search for last round key $K^{(n)}, \ldots$
 - 3. ... check $K^{(n)}$ candidates for consistency of $\Delta_{in} \Rightarrow \Delta_{out}$

2.10 Semantic Security

- Ciphertext does not help with calculations regarding plaintext
- Every information about M that can be calculated (efficiently) with knowledge of C, can also be calculated (efficiently) without knowing the ciphertext
- \Rightarrow only covers passive attacks
- Informal definition: A method of symmetric encryption is semantically secure if for every M-distribution of messages of equal length, every function f and every efficient algorithm A, there exists an efficient algorithm B such that

$$Pr[A^{Enc(K,\cdot)}(Enc(K,M)) = f(M)] - Pr[B(\epsilon) = f(M)]$$

is small.

• The existence of (reusable) semantically secure methods implies $P \neq NP$

2.11 Passive Security: IND-CPA

- IND-CPA: Indistinguishability under chosen-plaintext attacks
- Method is IND-CPA-secure \iff there's no efficient attacker A that can distinguish ciphertexts of two chosen plaintexts
 - 1. A is given access to $Enc(K, \cdot)$ oracle
 - 2. A chooses two messages $M^{(1)}$, $M^{(2)}$ of equal length
 - 3. A receives $C^* := Enc(K, M^{(b)})$ for uniformly distributed $b \in \{1, 2\}$
 - 4. A wins if it guesses b correctly
- Method is IND-CPA-secure $\iff \forall A : (Pr[A \text{ wins}] \frac{1}{2})$ is small
- IND-CPA \iff semantic security
- Proofs:
 - Not semantically secure: Build winning A
 - Semantically secure: Use winning A to build something that contradicts the assumptions, e.g. Enc and random discriminator)

3 Hash Functions

3.1 Goals

- Short fingerprint: $H: \{0,1\}^* \to \{0,1\}^k$
- Efficient algorithm H(X)
- Surjective: $H(\{0,1\}^*) = \{0,1\}^k$
- Avoid collisions, mapping on $\{0,1\}^k$ is uniformly distributed
- Creates chaos

3.2 Requirements for a hash function

- Collision resistance: hard to find $X \neq X'$ with H(X) = H(X')
- One-way property: given Y = H(X), X' with H(X') = Y is hard to find
- Target collision resistance: given X, X' with $X \neq X'$ and H(X) = H(X') is hard to find

3.3 Collision Resistance (informal)

- Collision: $X_0, X_1 \in \{0, 1\}^*$ with $X_0 \neq X_1 \land H(X_0) = H(X_1)$
- Collision resistant ← every efficient algorithm finds a collision only with small probability

3.4 Trivial Collisionfinder (Brute Force)

- Calculate $H := \{H(X)|X \in \{0,1\}^k\}$ in $O(2^k)$ time
- If no collision is found, then $H(X^*)$ is collision with an $X \in \{0,1\}^k$ for all $X^* \notin \{0,1\}^k$
- Better (in $O(2^{k/2})$ time):
 - 1. Randomly choose $2^{k/2}$ messages $X_1, \ldots, X_{2^{k/2}}$

- 2. For $i = 1, \ldots, 2^{k/2}$, calculate $Y_i := H(K_i)$
- 3. Look for collision $Y_i = Y_i$, if there's none go to 1.
- Approximately 2 iterations needed

3.5 Security Parameter: Asymptotic Definition

- $k \in \mathbb{N}$ parameterizes the system
- Efficient: Polynomial time (in k): PPT
- Small probability: negligible (in k)
 - $-f: \mathbb{N} \to \mathbb{R}$ negligible $\iff |f|$ vanishes asymptotically faster than the reciprocal of every given polynomial
 - $\forall c \exists k_0 \forall k \ge k_0 : |f(k)| \le k^{-c}$

3.6 Collision Resistance (formal)

A function H that is parameterized by k is $collision\ resistant$ if for every PPT algorithm A

$$Adv_{HA}^{cr}(k) := Pr[(X, X') \leftarrow A(1^k) : X \neq X' \land H_k(X) = H_k(X')]$$

is negligible.

3.7 One-way function

A function H that is parameterized by k is a one-way function regarding the distribution $\{\chi_k\}_k$ of the inverse image if for every PPT algorithm A

$$Adv_{H,A}^{ow}(k) := Pr[X' \leftarrow A(1^k, H(X)) : H_k(X) = H_k(X')]$$

is negligible, where $X \leftarrow \chi_k$.

3.8 Theorem: Collision Resistance \Rightarrow One-way property

Every collision resistant hash function $H: \{0,1\}^* \to \{0,1\}^k$ is a one-way function regarding the uniform distribution on $\{0,1\}^{2k}$.

Proof:

For every H-inverter A, there's a H-collision-finder B with

$$Adv_{H,B}^{cr}(k) \ge \frac{1}{2} Adv_{H,A}^{ow}(k) - \frac{1}{2}^{k+1}$$

3.9 Merkle-Damgård Construction

• Build hash function H_{MD} out of simpler compression function $F:\{0,1\}^{2k} \to \{0,1\}^k$

Figure 2: Merkle-Dåmgard construction

3.10 Theorem: F collision resistant $\Rightarrow H_{MD}$ collision resistant

Proof: Given $X \neq X', H_{MD}(X) = H_{MD}(X')$, find F collision

- 1. Let $X=X_1\ldots X_n, X'=X_1'\ldots X_n'$ with $X_i,X_i'\in\{0,1\}^k,$ MD intermediate values $Z_0:=IV,Z_i:=F(Z_{i-1},X_i)$
- 2. $Z_n = F(Z_{n-1}, X_n) = F(Z'_{n'-1}, X'_{n'}) = Z'_{n'}$
- 3. $Z_{n-1} \neq Z'_{n'-1}$ or $X_n \neq X'_{n'} \Rightarrow F$ collision

Thus, $X_n=X'_{n'}$ and $Z_{n-1}=F(Z_{n-2},X_{n-1})=F(Z'_{n'-2},X'_{n'-1})=Z'_{n'-1}$, but because of $X\neq X'$, we can't have $Z_i=Z'_i\forall i$. So there'd be an F collision.

4 Symmetric Authentication of Messages

- Goal: authenticated transmission over unauthenticated channel \to send message M with signature σ
- Requirements:
 - $-\sigma$ can be calculated by sender and verified by receiver
 - Length of σ is small
 - Outsider can't create valid σ for new M

4.1 MACs

- ullet A and B share a secret K
- Signing: $\sigma \leftarrow Sig(K, M), M \in \{0, 1\}^*, \sigma \in \{0, 1\}^k$

- Verifying: $Ver(K, M, \sigma) \in \{0, 1\}$
- Correctness: $Ver(K, M, \sigma) = 1 \forall K, M \text{ and } \sigma \leftarrow Sig(K, M)$

4.2 EUF-CMA Security

No PPT-attacker A wins the following game non-negligible often:

- 1. A is granted access to a $Sig(K, \cdot)$ -oracle
- 2. A outputs (M^*, σ^*)
- 3. A wins, iff. $Ver(K, M^*, \sigma^*) = 1$ and M^* hasn't been passed to the oracle before

4.3 Theorem: Hash-Then-Sign Paradigm

- Given: $(Sig,\,Ver)$ EUF-CMA secure and H is a collision resistant hash-function
- Then: MAC $Sig'(K,M) = Sig(K,H(M)), Ver'(K,M,\sigma) = Ver(K,H(M),\sigma)$ is also EUF-CMA secure
- Proof: Any EUF-CMA attacker A' on (Sig', Ver') must either find a H collision or a signature σ for a fresh H(M).

4.4 Preudorandom function PRF

- $PRF: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}^k$ over $k \in \mathbb{N}$ parameters
- ullet PRF is called a pseudorandom function iff. for ever PPT alorithm A

$$Adv^{prf}_{PRF,A}(k) := Pr[A^{PRF(K,\cdot)}(1^k) = 1] - Pr[A^{R(\cdot)}(1^k = 1]$$

is negligible, where $R: \{0,1\}^k \to \{0,1\}^k$ is a real random function.

4.5 Creating PRF candidates from hashfunctions

- PRF(K, X) := H(K||X)
- Sometimes (Merkle-Dåmgard), a hashvalue is extensible: H(K||X|) = H(K||X||X') breaks PRF property for inputs of variable length

4.6 Theorem: MACs from PRFs and hashfunctions

- Given: $PRF: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}^k$ a PRF and $H: \{0,1\}^* \to \{0,1\}^k$ a collision resistant hashfunction
- Then: Sig(K, M) = PRF(K, H(M)) is EUF-CMA secure
- $\bullet\,$ Proof: Assume A to be a succesful EUF-CMA attacker
 - Then A produces fake (M^*, σ^*) with fresh M^*
 - A thus represents a PRF-distinguisher that predicts $PRF(K, H(M^*))$

4.7 HMAC

- $Sig(K, M) = H((K \oplus opad)||H((K \oplus ipad)||M))$
- Advantages to Sig(K, M) = H(K||H(M)):
 - Additional parameterization makes attacks harder
 - H collisions don't necessarily lead to breakage of Sig

4.8 CBC-MAC: MAC from CBC-Mode

- \bullet Choose IV and pick last block of ciphertext as MAC
- If message is encrypted by CBC as well, don't choose the same key!

Cipher Block Chaining (CBC) mode encryption

Figure 3: CBC

5 Asymmetric Encryption (Public Key)

- Idea:
 - Encryption using public key: $C \leftarrow Enc(pk, M)$
 - Decryption using secret key: $M \leftarrow Dec(sk, C)$
 - pk and sk are generated together: $(pk, sk) \leftarrow Gen(1^k)$
 - pk is public, sk is secret
 - Thus, there is no (secret) key distribution, for n users there are only n public and n secret keys
- It's often good to use hybrid methods: a symmetric method to transfer key K and afterwards a symmetric method using K

5.1 RSA

- pk = (N, e), sk = (N, d)
- N = PQ for (sufficiently large) primes $P \neq Q$
- Calculate in $\mathbb{Z}/N\mathbb{Z}$, where e and d are inverse exponents: $-e \cdot d \equiv 1 \mod \varphi(N)$ with $\varphi(N) = (P-1)(Q-1)$
- $c \cdot a = 1 \mod \varphi(iv) \text{ with } \varphi(iv)$
- Message room is $\mathcal{M} := \mathbb{Z}_N$

- $Enc(pk, M) = M^e \mod N$
- $Dec(sk, C) = C^d \mod N$

5.1.1 RSA Key Generation

- Goal: pk = (N, e), sk = (N, d)
- Gen chooses P and Q of given bit length k randomly
 - e.g. choose uniformly distributed uneven $P \in \{2^k, \dots, 2^{k+1}\}$ until P is prime
- To get e and d:
 - Choose uniformly distributed $e \in \{3, \dots, \varphi(M) 1\}$ until $\gcd(e, \varphi(N)) = 1$
 - Calculate $d=e^{-1} \mod \varphi(N)$ using the extended Euclidean algorithm:
 - * $EE(e, \varphi(N)) = (\alpha, \beta)$ with $\alpha e + \beta \varphi(N) = \gcd(e, \varphi(N)) = 1$
 - * Then $\alpha e = 1 \mod \varphi(N)$, so set $d := \alpha \mod \varphi(N)$

5.1.2 Correctness of RSA

We have to prove $(M^e)^d \equiv M^{ed} \equiv M \mod N$.

5.1.2.1 Theorem: Fermat's little theorem

For prime P and $M \in \{1, \dots, P-1\}$ we have $M^{P-1} \equiv 1 \mod P$. Thus, $\forall M \in \mathbb{Z}_P, \alpha \in \mathbb{Z} : (M^{P-1})^{\alpha} \cdot M \equiv M \mod P$.

5.1.2.2 Theorem: Chinese remainder theorem

Let N = PQ, where P and Q are coprime. Then $\mu : \mathbb{Z}_N \to \mathbb{Z}_P \times \mathbb{Z}_Q$ with $\mu(M) = (M \mod P, M \mod Q)$ is bijective. Thus, $(X \equiv Y \mod P) \land (X \equiv Y \mod Q) \Rightarrow X \equiv Y \mod N$.

5.1.2.3 Proof

Show: Let N, e, d be defined as above, then $M^{ed} \equiv M \mod N \ \forall M \in \mathbb{Z}_N$.

We have $ed \equiv 1 \mod \varphi(N)$ and $\varphi(N) = (P-1)(Q-1)$, so $(P-1)(Q-1)|ed-1 \Rightarrow P-1|ed-1 \Rightarrow ed = \alpha(P-1)+1$ for some $\alpha \in \mathbb{Z}$ Thus $M^{ed} \equiv (M^{P-1})^{\alpha} \cdot M \equiv M \mod P$ by Fermat. Analogously: $M^{ed} \equiv M \mod Q \Rightarrow M^{ed} \equiv M \mod N$

5.2 Semantic Security for Public Key Procedures

A public key procedure is semantically secure if for every M-distribution of messages of equal length, every function f and every PPT-algorithm A, there exists a PPT-algorithm B such that

$$Pr[A(1^k, pk, Enc(pk, M)) = f(M)] - Pr[B(1^k) = f(M)]$$

is negligibly small.

5.3 IND-CPA for Asymmetric Encryption

- Challenger C creates pair of keys $(pk, sk) \leftarrow Gen(1^k)$
- No Enc-oracle, instead the attacker obtains pk

5.4 Security of RSA

- Not semantically secure
 - $-f(M) \equiv M^e \mod N$ can be calculated with ciphertext, but without ciphertext there's no information on M. This makes use of the determinism.
- Homomorphy
 - In \mathbb{Z}_N we have $Enc(pk, M) \cdot Enc(pk, M') = M^e \cdot M'^e = (M \cdot M')^e = Enc(pk, M \cdot M')$.

5.5 RSA Padding

- Randomized padding
 - $-pad(M,R) = M||0^l||R$, where $M,R \ll N$ and R random
 - $Enc(pk, M) = (pad(M, R))^e \mod N$
 - Dec gets and checks pad(M, R) then extracts M
- RSA-OAEP contains pad-functionality (G, H are hashfunctions)
 - Heuristically as secure as inverting RSA-function
 - Best known attack: factorize N, so N of 2048 Bit is secure
 - \ominus computationally intensive, hard to parallelize
 - \oplus easy to implement

5.6 ElGamal

- Cyclic group $\mathbb{G} = \langle g \rangle, pk = (\mathbb{G}, g, g^x), sk = (\mathbb{G}, g, x)$ with x random
- $Enc(pk, M) = (g^y, g^{xy} \cdot M)$ with y random
- $Dec(sk, (Y, Z)) = Z/Y^x = (g^{xy} \cdot M)/(g^y)^x = M$
- Encryption is probabilistic, but also homomorph:

$$Enc(pk, M) \cdot Enc(pk, M') = (g^{y}, g^{xy} \cdot M) \cdot (g^{y'}, g^{xy'} \cdot M')$$
$$= (g^{y+y'}, g^{x(y+y')} \cdot M \cdot M')$$
$$= Enc(pk, M \cdot M')$$

- Semantically secure, non-homomorph variants exist
- Candidates for \mathbb{G} :
 - (real) subgroups of \mathbb{Z}_p^* , with p prime
 - subgroups of \mathbb{F}_q^* , with q a prime power
 - efficient: subgroup of elliptical curve $E(\mathbb{F}_q)$

6 Asymmetric Authentification of Messages

- Idea:
 - $-(pk, sk) \leftarrow Gen(1^k)$ as with public key procedures
 - Signing: $\sigma \leftarrow Sig(sk, M)$
 - Verification: $Ver(pk, M, \sigma) \in \{0, 1\}$
 - Correctness as with MACs: $Ver(pk, M, \sigma) = 1 \ \forall (pk, sk) \leftarrow Gen(1^k), \forall M, \forall \sigma = Sig(sk, M)$

6.1 Security: EUF-CMA definition as with MACs

• Challenger C executes $(pk, sk) \leftarrow Gen(1^k)$ and provides A with a $Sig(sk, \cdot)$ oracle

6.2 RSA as a Signing Scheme

- $Sig(sk, M) \equiv M^d \mod N$
- $Ver(pk, M, \sigma) = 1 : \iff M \equiv \sigma^e \mod N$
- Problem: nonsense messages can be signed
 - 1. First, choose any $\sigma \in \mathbb{Z}_N$
 - 2. Let $M := \sigma^e \mod N$
 - Breaks EUF-CMA
- Problem: Homomorphy
 - Known signatures can be used to calculate new ones

6.3 RSA-PSS: "Probabilistic Signature Scheme"

- Preprocessing (Padding) of messages
- $Sig(sk, M) = (pad(M))^d \mod N$
- $Ver(pk, M, \sigma) = 1 : \iff \sigma^e \mod N \text{ is valid } pad(M)$
- Security of RSA-PSS: heuristic EUF-CMA-secure, if RSA-function is hard to invert

6.4 ElGamal Signatures

- Let $a := g^e$ for random e, b solution of $a \cdot x + e \cdot b \equiv M \mod |\mathbb{G}|$
- Then Sig(sk, M) = (a, b)
- $Ver(pk, M, \sigma) = 1 : \iff (g^x)^a a^b = g^M$