Security Review

Niklas Biihler

Summerterm 2020

Contents
1 General

2 Symmetric Encryption

2.1 One-Time-Pad (OTP) . ... ... ... ... ... ........
2.2 Stream ciphers . . . . ... .. L
2.3 Blockciphers . . . .. ...

2.3.1 Operatingmodes . . . . ... ... ... ...
2.4 Data Encryption Standard (DES) . . . . .. ... .. ... ... ..
25 2DES . ..o
26 3DES . . ..
2.7 Advanced Encryption Standard (AES) . . .. ... ... .. ...
2.8 Linear Cryptanalysis . . . . . . ... ... . ... ... ..
2.9 Differential Cryptanalysis . . . . .. .. ... ... .. ......
2.10 Semantic Security . . . . . ... ..o
2.11 Passive Security: IND-CPA . . . . . .. ... ... .. ... ..

3 Hash Functions

3.1 Goals . . ..o
3.2 Requirements for a hash function . . . . . ... ... .. ... ..
3.3 Collision Resistance (informal) . . . ... ... ... .. .....
3.4 Trivial Collisionfinder (Brute Force) . ... ... .. ... ....
3.5 Security Parameter: Asymptotic Definition . . . . .. ... ...
3.6 Collision Resistance (formal) . . ... ... ... .. ... ....
3.7 Onme-way function . . . . . .. .. ... L
3.8 Theorem: Collision Resistance = One-way property . . ... . .
3.9 Merkle-Damgard Construction . . . ... ... ... ... ....
3.10 Theorem: F' collision resistant = H;p collision resistant

4 Symmetric Authentication of Messages
4.1 MAGs . . . . e
4.2 EUF-CMA Security . . . ... ... ... .. ... ...
4.3 Theorem: Hash-Then-Sign Paradigm . . . . ... ... ... ...



4.4 Preudorandom function PRF . . ... ... .. .. ... ..... 11
4.5 Creating PRF candidates from hashfunctions . . . .. ... ... 11
4.6 Theorem: MACs from PRFs and hashfunctions . . . .. ... .. 11
4.7 HMAC . . . . e 12
4.8 CBC-MAC: MAC from CBC-Mode . . . . .. ... ........ 12
Asymmetric Encryption (Public Key) 12
5.1 RSA . . . e 12

5.1.1 RSA Key Generation . . . . . . ... ... ... ...... 13

5.1.2 Correctness of RSA . . . . . .. ... .. ... .. ... . 13
5.2 Semantic Security for Public Key Procedures . . . .. ... ... 13
5.3 IND-CPA for Asymmetric Encryption . . . ... ... ... ... 14
54 Security of RSA . . . . . . .. 14
55 RSA Padding . . . . .. ... ... 14
5,6 ElGamal . . . . . . ... 14
Asymmetric Authentification of Messages 15
6.1 Security: EUF-CMA definition as with MACs . . . . . ... ... 15
6.2 RSA as a Signing Scheme . . . .. ... ... ... . ..... 15
6.3 RSA-PSS: “Probabilistic Signature Scheme” . . . . . . ... ... 15
6.4 ElGamal Signatures . . . ... ... ... L L. 15



Preface

This is a summary of the most important definitions, theorems and some proofs
for the Security lecture at KIT. It is based on the lectures by Prof. Miiller-Quade
in summer term 2020.



2.3.1

General

Concept of CIA: Confidentiality, Integrity, Availability

Symmetric Encryption

One-Time-Pad (OTP)

Length of key is equal to length of message; M, K € {0,1}"
Encoding: E(K,M)=C=M® K € {0,1}"

Decoding: D(K,C)=C® K =M

Important: K has to be chosen at random, uniformly distributed
@ Given C, every possible M is equiprobable

© The key is bulky, may not be reused

© Ciphertext is malleable: C® K = (M & X)® K

Stream ciphers

Idea: Simulate OTP with short K € {0,1}*, (k < n)

Expand K to K’ := G(K) € {0,1}", then perform OTP using K’

Goal: pseudorandom number G(K) should “look” truly random

@ Fast, especially in hardware

@ Established construction using multiple linear-feedback shift registers
(LFSRs)

© Oftentimes algebraic attacks possible

© Requires synchronization for updating key

© Ciphertext is malleable, like in OTP

Block ciphers

E:{0,1}* x {0, 1} — {0,1}}, (K, M) — C
D :{0,1}* x {0,1}} — {0,1}},(K,C) — M
Correctness: VK, M : D(K,E(K,M)) =M

Operating modes

2.3.1.1 Electronic Codebook Mode (ECB)

Idea: Split M into I-bit blocks Mj,--- € {0,1} and let C := (C4,...) with
C; = E(K, M;) € {0,1}!, decryption works analog

@ Easy to implement, no synchronization required

© Same M, same C'; Insertions or different order possible

6 Bit error in C; destroys block M;

2.3.1.2 Cipher Block Chaining Mode (CBC)

Problem with ECB: cipher blocks are independent = chain them



e Split M into I-bit blocks My, ...

o Let Cy := IV (initialization vector)

o Let Cz = E(K, ]\4Z (§5) Oi—l)

o Decoding: M; := D(K,C;) ® C;_1

e IV has to be transmitted as well, or be a constant

e @ Solves some disadvantages of the ECB: Same message blocks don’t
result in the same cipher blocks anymore, arranging the cipher blocks in a
different order is also not possible anymore

e © Not parallelizable

e & Cipher text is malleable

e © Bit error in C; at position j destroys block M; and flips bit j in M; 4

2.3.1.3 Counter Mode (CTR)

e Similar to stream ciphers

o Cop:=1V,C;:= E(K,IV +1i) ® M;

 Similar properties to CBC (but can be parallelized better)

e Also allows homomorph malleability

o = Use Galois Counter Mode (GCM), which is authenticated

2.3.1.4 Roundup

o Block ciphers use encription E in blocks

o« ECB: “raw” E-function = don’t use

e« CBC, CTR: better, but only secure against eavesdropping
¢ GCM: best choice

2.4 Data Encryption Standard (DES)

o Uses Feistel cipher

¢ Round function F' is non-invertable, but E is

o Structurally unbroken (but key is too short)

o Input- and output-permutation are inverse, so IP = FP~!

e Decryption uses same Feistel cipher, but F-keys are used in reverse

2.5 2DES

o K := (K, K>) € ({0,1}°0)2
o Eyprs(K,M):=FEpgs(Ka, Epgs(Ki, M)
e Not really more secure than DES
e Meet-in-the-middle attack
— Given: M,C = EQDEs(K, M)
— Goal: K = (Kl,KQ)
. Calculate list of all C; := Epps(Ki, M)
. Sort list lexicographically (for binary search)
. Calculate Ck, := Dpgs (K}, C) successively
. If Cky = Cky, output (K7, K3)

= N
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Figure 1: Feistel cipher




2.6 3DES

e Because DES and 2DES are not secure

o K := (K17K2,K3) € ({O, 1}56)3

e E3pps(K,M):= Epps(Ks, Dpes(K2, Epps(K1, M)))
o Meet-in-the-middle attack has complexity ~ 2112

2.7 Advanced Encryption Standard (AES)

e No Feistel cypher
e According to present knowledge secure

2.8 Linear Cryptanalysis

o Find Fs-linear dependencies in bits of X and YV := E(K, X)
— Enables indirect attack on Feistel cypher (n rounds):
1. Find linear dependency in F-input and -output
Expand dependency on first n — 1 rounds
Complete search for last round key K (™)
Check K™ candidate using linear dependency
If K is found, search for K (=1 K("=2)

Gt o

2.9 Differential Cryptanalysis

o Consider differences in output A,,; := Y @Y in dependence to differences
in input A, := X & X’
o Attack on Feistel cypher similar to linear cryptanalysis:
1. Find most probable pairs A;, = Ay from input and output of
second last round
2. Complete search for last round key K, ...
3. ... check K™ candidates for consistency of A, = Ay

2.10 Semantic Security

e Ciphertext does not help with calculations regarding plaintext

o Every information about M that can be calculated (efficiently) with knowl-
edge of C, can also be calculated (efficiently) without knowing the cipher-
text

e = only covers passive attacks

¢ Informal definition: A method of symmetric encryption is semantically
secure if for every M-distribution of messages of equal length, every function
f and every efficient algorithm A, there exists an efficient algorithm B
such that

Pr{AE ) (Bne(K, M)) = f(M)] — Pr[B(c) = f(M))]

is small.
o The existence of (reusable) semantically secure methods implies P # NP



2.11 Passive Security: IND-CPA

IND-CPA: Indistinguishability under chosen-plaintext attacks
Method is IND-CPA-secure <= there’s no efficient attacker A that can
distinguish ciphertexts of two chosen plaintexts
1. A is given access to Enc(K, ) oracle
2. A chooses two messages M1, M) of equal length
3. A receives C* := Enc(K, M(®) for uniformly distributed b € {1, 2}
4. A wins if it guesses b correctly
Method is IND-CPA-secure <= VA : (Pr[A wins] — 1) is small
IND-CPA <= semantic security
Proofs:
— Not semantically secure: Build winning A
— Semantically secure: Use winning A to build something that contra-
dicts the assumptions, e.g. Enc and random discriminator)

Hash Functions

Goals

Short fingerprint: H : {0,1}* — {0,1}*

Efficient algorithm H(X)

Surjective: H({0,1}*) = {0,1}*

Avoid collisions, mapping on {0, 1}* is uniformly distributed
Creates chaos

Requirements for a hash function

Collision resistance: hard to find X # X' with H(X) = H(X’)

One-way property: given Y = H(X), X' with H(X’') =Y is hard to find
Target collision resistance: given X, X’ with X # X' and H(X) = H(X')
is hard to find

Collision Resistance (informal)

Collision: XQ,Xl € {0, 1}* with XO 75 X1 A H(Xo) = H(Xl)
Collision resistant <= every efficient algorithm finds a collision only with
small probability

Trivial Collisionfinder (Brute Force)

Calculate H := {H(X)|X € {0,1}*} in O(2F) time
If no collision is found, then H(X*) is collision with an X € {0, 1}* for all
X g {0,114
Better (in O(2F/2) time):
1. Randomly choose 2¥/? messages X1, ..., Xor/2



2. Fori=1,...,2F?2 calculate Y; := H(K;)
3. Look for collision Y; =Yj, if there’s none go to 1.
— Approximately 2 iterations needed

3.5 Security Parameter: Asymptotic Definition

e k € N parameterizes the system
o Efficient: Polynomial time (in k): PPT
o Small probability: negligible (in k)
— f: N — R negligible <= |f| vanishes asymptotically faster than
the reciprocal of every given polynomial
— VeTkoVk > ko : |f(K)| < k¢
3.6 Collision Resistance (formal)

A function H that is parameterized by k is collision resistant if for every PPT
algorithm A

Adv§] 4 (k) == Pr((X, X") « A1) : X # X' A Hy(X) = Hi(X")]

is negligible.

3.7 One-way function

A function H that is parameterized by k is a one-way function regarding the
distribution {xx}x of the inverse image if for every PPT algorithm A

Adv§fs (k) == Pr(X’' «+ A(1*, H(X)) : Hy(X) = Hi(X")]

is negligible, where X <+ xg.

3.8 Theorem: Collision Resistance = One-way property

Every collision resistant hashfunction H : {0,1}* — {0, 1}* is a one-way function
regarding the uniform distribution on {0, 1}2~.

Proof:
For every H-inverter A, there’s a H-collision-finder B with

1 k+1

Adv;;B(k) 2 %Adv?}f’A(/ﬂ) — 5

3.9 Merkle-Damgard Construction

e Build hashfunction Hp;p out of simpler compression function
F:{0,1}?% — {0,1}*
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Figure 2: Merkle-Damgard construction

3.10 Theorem: [F' collision resistant = H,;p collision re-
sistant

Proof: Given X # X', Hyp(X) = Hyp(X'), find F collision

1. Let X = Xy ... Xn, X' = X/ ... X! with X;, X! € {0,1}*,
MD intermediate values Zy := IV, Z; :== F(Z;_1,X;)

2. Zp=F(Zn1,Xp)=FZ,_,,X.) =2,

n’—1»“*n/
3. Zpn_1 #Z,_, or X, # X/, = F collision

Thus, Xn = Xrlz’ and Zn—l = F(Zn_g,Xn_l) = F(Z’;L/—27X7/l/—1) = Z1/’L’—17 but

because of X # X', we can’t have Z; = Z/Vi. So there’d be an F collision.

4 Symmetric Authentication of Messages

e Goal: authenticated transmission over unauthenticated channel — send
message M with signature o
e Requirements:
— o can be calculated by sender and verified by receiver
— Length of ¢ is small
— Outsider can’t create valid o for new M

4.1 MACs

e A and B share a secret K
o Signing: o < Sig(K,M),M € {0,1}*,0 € {0,1}*
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o Verifying: Ver(K,M,o) € {0,1}
o Correctness: Ver(K,M,o) = 1VK, M and o + Sig(K, M)

4.2 EUF-CMA Security
No PPT-attacker A wins the following game non-negligible often:

1. A is granted access to a Sig(K, -)-oracle

2. A outputs (M*,0*)

3. A wins, iff. Ver(K, M* 0*) =1 and M* hasn’t been passed to the oracle
before

4.3 Theorem: Hash-Then-Sign Paradigm

e Given: (Sig, Ver) EUF-CMA secure and H is a collision resistant hash-
function

o Then: MAC Sig' (K, M) = Sig(K,H(M)),Ver' (K,M,o) = Ver(K,H(M),o)
is also EUF-CMA secure

o Proof: Any EUF-CMA attacker A’ on (Sig’, Ver’) must either find a H
collision or a signature o for a fresh H(M).

4.4 Preudorandom function PRF

e PRF :{0,1}* x {0,1}* — {0,1}* over k € N parameters
e PRF is called a pseudorandom function iff. for ever PPT alorithm A

Advifp (k) == PrIAPRFEI (18 = 1] — prARO (1% = 1]

is negligible, where R : {0,1}* — {0,1}* is a real random function.

4.5 Creating PRF candidates from hashfunctions

« PRF(K,X):= H(K||X)
o Sometimes (Merkle-Damgard), a hashvalue is extensible: H(K||X) =
H(K]||X]|X") breaks PRF property for inputs of variable length

4.6 Theorem: MACs from PRFs and hashfunctions

o Given: PRF : {0,1}*x{0,1}* — {0,1}* a PRF and H : {0,1}* — {0,1}*
a collision resistant hashfunction
o Then: Sig(K,M)= PRF(K,H(M)) is EUF-CMA secure
e Proof: Assume A to be a succesful EUF-CMA attacker
— Then A produces fake (M*,o*) with fresh M*
— A thus represents a PRF-distinguisher that predicts PRF (K, H(M™*))

11



4.7 HMAC

o Sig(K,M) = H((K @ opad)||H((K @ ipad)||M))
o Advantages to Sig(K, M) = H(K||H(M)):
— Additional parameterization makes attacks harder
— H collisions don’t necessarily lead to breakage of Sig

4.8 CBC-MAC: MAC from CBC-Mode

e Choose IV and pick last block of ciphertext as MAC
o If message is encrypted by CBC as well, don’t choose the same key!

Plaintext Plaintext Plaintext
CITTTITTTITT1 [TTTTTTITITTT] CITTTITTTTTT1
Initialization Vector (V) %5 %
T —
block cipher bleck cipher block cipher
Key encryption Key encryption Key encryption
ITTTTTTTTTT1 [TTTTTTTTTT7T] ITTTITTITTT1
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

Figure 3: CBC

5 Asymmetric Encryption (Public Key)

o Idea:
— Encryption using public key: C' <+ Enc(pk, M)
— Decryption using secret key: M < Dec(sk,C)
— pk and sk are generated together: (pk, sk) < Gen(1%)
— pk is public, sk is secret
— Thus, there is no (secret) key distribution, for n users there are only
n public and n secret keys
o It’s often good to use hybrid methods: asymmetric method to transfer key
K and afterwards a symmetric method using K

5.1 RSA

o pk = (N,e),sk = (N,d)

o N = PQ for (sufficiently large) primes P # @

e Calculate in Z/NZ, where e and d are inverse exponents:
—e-d=1 mod p(N) with p(N) = (P -1)(Q — 1)

e Message room is M := Zy

12



o Enc(pk,M)= M mod N
e Dec(sk,C) = C¢ mod N

5.1.1 RSA Key Generation

e Goal: pk = (N,e),sk = (N,d)
¢ Gen chooses P and @ of given bit length k& randomly
— e.g. choose uniformly distributed uneven P € {2% ... 2*+11 until P
is prime
e To get e and d:
— Choose uniformly distributed e € {3,...,o(M) — 1} until
ged(e, p(N)) = 1
— Calculate d = ¢! mod ¢(N) using the extended Euclidean algo-
rithm:
x EE(e,o(N)) = (o, 8) with ae + Bp(N) = ged(e, p(N)) =1
* Then ae =1 mod (), so set d:=a mod p(N)

5.1.2 Correctness of RSA
We have to prove (M¢)4 = M = M mod N.

5.1.2.1 Theorem: Fermat’s little theorem

For prime P and M € {1,..., P — 1} we have M~ =1 mod P.

Thus, VM € Zp,a € Z: (MP~1)*. M =M mod P.

5.1.2.2 Theorem: Chinese remainder theorem

Let N = PQ, where P and @ are coprime. Then p : Zy — Zp X Zg with
pw(M)= (M mod P,M mod Q) is bijective.

Thus, (X =Y mod P)A(X =Y mod Q)= X =Y mod N.

5.1.2.3 Proof

Show: Let N, e, d be defined as above, then M = M mod N VM € Zy.

We haveed =1 mod ¢(N) and o(N) = (P-1)(Q—1),s0 (P—1)(Q—1)|ed—1 =
P—1lled—1=ed=ca(P—1)+1 for some o € Z

Thus M¢ = (MP~1)*. M = M mod P by Fermat.

Analogously: M = M mod Q = M = M mod N

5.2 Semantic Security for Public Key Procedures

A public key procedure is semantically secure if for every M-distribution of
messages of equal length, every function f and every PPT-algorithm A, there
exists a PPT-algorithm B such that

Pr{A(1", pk, Enc(pk, M)) = f(M)] — Pr[B(1*) = f(M)]

13



is negligibly small.

5.3

5.4

5.5

IND-CPA for Asymmetric Encryption

Challenger C creates pair of keys (pk, sk) < Gen(1%)
No Enc-oracle, instead the attacker obtains pk

Security of RSA

Not semantically secure
— f(M) = M¢ mod N can be calculated with ciphertext, but without
ciphertext there’s no information on M. This makes use of the
determinism.
Homomorphy
— In Zy we have Enc(pk, M) - Enc(pk, M') = M¢-M'®* = (M - M')® =
Enc(pk, M - M").

RSA Padding

Randomized padding
— pad(M, R) = M||0'||R, where M, R < N and R random
— Enc(pk, M) = (pad(M, R))¢ mod N
— Dec gets and checks pad(M, R) then extracts M
RSA-OAEP contains pad-functionality (G, H are hashfunctions)
— Heuristically as secure as inverting RSA-function
— Best known attack: factorize N, so N of 2048 Bit is secure
— © computationally intensive, hard to parallelize
— @ easy to implement

ElGamal
Cyclic group G = (g), pk = (G, g, ¢%), sk = (G, g, z) with x random
Enc(pk, M) = (¢g¥,¢g™¥ - M) with y random
Dec(sk, (Y, 2)) = 2/Y*" = (¢ - M)/(9*)" = M
Encryption is probabilistic, but also homomorph:

Enc(pkv M) ' Enc(pka MI) = (g'qvgxy : M) ’ (gylvgmy' . M/)
— (gy+y/7gz(y+y/) .M - M)
= Enc(pk, M - M")
Semantically secure, non-homomorph variants exist
Candidates for G:
— (real) subgroups of Zy, with p prime

— subgroups of Fy, with ¢ a prime power
— efficient: subgroup of elliptical curve E(F,)

14



6

6.1

Asymmetric Authentification of Messages

Idea:
— (pk, sk) + Gen(1¥) as with public key procedures
— Signing: o + Sig(sk, M)
— Verification: Ver(pk, M, o) € {0,1}
— Correctness as with MACs: Ver(pk,M,o0) = 1 V(pk,sk) <«
Gen(1%),YM, Vo = Sig(sk, M)

Security: EUF-CMA definition as with M ACs

Challenger C executes (pk, sk) < Gen(1*) and provides A with a Sig(sk, -)-
oracle

RSA as a Signing Scheme

Sig(sk, M) = M? mod N
Ver(pk,M,0) =1: <= M =0° mod N
Problem: nonsense messages can be signed
1. First, choose any o € Zy
2. Let M :=0° mod N
— Breaks EUF-CMA
Problem: Homomorphy
— Known signatures can be used to calculate new ones

RSA-PSS: “Probabilistic Signature Scheme”

Preprocessing (Padding) of messages

Sig(sk, M) = (pad(M))* mod N

Ver(pk,M,0) =1: <= 0¢° mod N is valid pad(M)

Security of RSA-PSS: heuristic EUF-CMA-secure, if RSA-function is hard
to invert

ElGamal Signatures

Let a := ¢° for random e, b solution of a- 2 4+e-b=M mod |G|
Then Sig(sk, M) = (a,b)
Ver(pk,M,0) =1:+= (g*)%’ = g™

15
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