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Abstract

When documenting an unknown language – and especially its pronunciation – for the first
time, linguists are oftentimes missing the necessary technology to do so efficiently. The work
described in this thesis might facilitate future advancements in this regard by further developing
techniques that make the computer-assisted examination of languages more efficient.

However, not only the process of manually examining an unseen language is very costly. Even in
cases where automatic speech recognition technology is already utilized, the necessary process
of data collection and preparation still remains costly. Cross-lingual approaches can alleviate
this problem.

The goal of this thesis is to apply cross-lingual, multilingual techniques on the task of phoneme
alignment, i.e. the task of temporally aligning a phonetic transcript to its corresponding audio
recording.

Three different neural network architectures are trained on a multilingual data set and utilized
as a source of emission probabilities in hybrid HMM/ANN systems. These HMM/ANN systems
enable the computation of phoneme alignments via the Viterbi algorithm. By iterating this
process, multilingual acoustic models are bootstrapped and the resulting systems are used to
cross-lingually align data from a previously unseen target language. Finally, the results are
scored and compared against each other.

Zusammenfassung

Linguisten fehlt oftmals die nötige Technologie, um unbekannte Sprachen – und vor allem deren
Aussprache – effizient zu dokumentieren. Diese Arbeit kann zukünftige Vorhaben in diesem
Bereich unterstützen, indem Methoden zur computergestützten Untersuchung von Sprachen
weiterentwickelt werden.

Selbst wenn bereits automatische Spracherkennung im Einsatz ist, bleibt die hierfür notwendige
Datenerfassung sehr aufwendig. Crosslinguale Ansätze können dieses Problem abschwächen.

Das Ziel dieser Arbeit ist es, cross- und multilinguale Methoden für das Phonem-Alignment,
also das zeitliche Zuordnen von Phonemen und zugehörigen Sprachaufnahmen, anzuwenden.

Drei verschiedene Architekturen neuronaler Netze werden auf einem multilingualen Datensatz
trainiert und als Quelle von Emissionswahrscheinlichkeiten in hybriden HMM/ANN Systemen
eingesetzt. Diese HMM/ANN Systeme ermöglichen das Berechnen von Phonem-Alignments
mittels des Viterbi-Algorithmus. Durch das Iterieren dieses Prozesses werden multilinguale
akustische Modelle geschaffen und die resultierenden Systeme werden crosslingual verwendet,
um Phonem-Alignments in einer bisher ungesehenen Sprache zu berechnen. Abschließend wer-
den die Resultate der verschiedenen Systeme bewertet und miteinander verglichen.
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1 Introduction

1.1 Motivation

There are roughly 7,000 languages spoken today. Because these languages are living, they are
dynamically changing over time. And so is their number: Roughly 40% of these currently 7,000
languages are endangered1 ([ESF21]). Furthermore, only a minor percentage of languages
spoken today is sufficiently covered by technology or even by linguistic knowledge. Thus,
many endangered languages – and with them a big part of their corresponding cultures – are
completely and irreplaceably lost when their last speaker dies, as has been described in [Cry00].

There has been a recent surge in documentary linguistics ([Woo03]), which works towards
documenting and thus preserving many of these endangered languages before they’re lost for
posterity. However, it is not to be assumed that the documentary linguistics community will
be able to do so without the aid of automatic processing ([Add+16]).

The work at hand thus aims at improving the necessary technology that linguists are presently
missing in order to efficiently document new languages. It does so by further improving on state-
of-the-art methods for aligning phonemes to their speech recordings, while especially focusing
on under-resourced languages.

Such technology will enable field linguists to better examine and document the pronunciation
of a new language.

1.2 Research Question

From a purely technical perspective, the problem to be solved is known as force-alignment of
a phonetic transcript to its respective audio recording, i.e. to generate a time-alignment of
phonetic transcript and audio signal.

The standard method of producing such an alignment is combining a hidden Markov model
(HMM) with a Gaussian mixture model (GMM) and running the Viterbi algorithm on this
system ([RJ86]). However, inspired by the rise and ubiquitous success of deep learning, re-
placing the GMM with an artificial neural network (ANN) for obtaining emission probabilities
has proven to be superior. This approach brings together the best from both worlds; the
time-alignment capability of HMMs and the discrimination-based learning of ANNs (see also
[FLW90]). There have been purely connectionist attempts as well, and although they showed
promising results, they did not outperform HMM-based systems yet ([Han+14]).

However, artificial neural networks require large amounts of data for their training. This data
is by definition not available when first documenting an as of yet undocumented language.
Building a cross-lingual system – applying the system to languages that have not been used for
training it – can alleviate this problem.

1A language is said to be endangered when its users begin to speak and teach a more dominant language to
their children.
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1.3 Structure of this Thesis

In the performed experiments, multiple approaches are compared against each other. First, an
ordinary feedforward neural network is trained on a monolingual data set and applied cross-
lingually. In further experiments, a multilingual data set is used to train the cross-lingual
systems and the feedforward architecture is replaced by various more complex architectures.

1.3 Structure of this Thesis

The remainder of this thesis is structured as follows:

Chapter 2: In the Background chapter, the foundation of this thesis is laid by introducing
various important theoretical concepts regarding hidden Markov models and artificial neural
networks. This spans not only the general Viterbi algorithm, but also the different network
architectures that replace the feedforward network in subsequent experiments.

Chapter 3: In the Related Work chapter, state-of-the-art techniques and results in the field of
automatic speech recognition (ASR) are reviewed and presented, especially regarding phoneme
recognition and alignment.

Chapter 4: The Main Contributions chapter starts with presenting the HMM/ANN system
that is utilized in all experiments. The whole experimental pipeline is described, including the
methods used for preprocessing the audio and preparing the data sets, the process of bootstrap-
ping a multilingual acoustic model and the evaluation procedure. Utilized toolkits, libraries
and data sets are presented as well. The descriptions of the performed experiments further
specify the architectures of the neural networks and special methods used for training them in
each experiment.

Chapter 5: In the Evaluation chapter, the results from the previous chapter are evaluated
and compared against each other. The scoring functions used to compare these results are also
defined.

Chapter 6: Finally, in the Conclusion chapter, the thesis is summarized and the evaluation re-
sults are interpreted and put into context. Possible directions for further research are proposed.
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2 Background

This chapter serves as an introduction to the most important theoretical concepts this thesis
builds upon, spanning hidden Markov models and artificial neural networks.

A Remark on Notation

In the following chapter, the requirement to address a vector’s value in a specific time step will
oftentimes arise. In cases where the variable is not a vector, xt is sufficient notation, but in
this special case, the notation xt

i will be used to mean the value of the i-th element of x as of
time step t.

2.1 Hidden Markov Models

Generally speaking, a hidden Markov model (HMM) is a pair of stochastic processes (X, Y ),
of which X is a Markov chain whose behavior is not directly observable. The behavior of Y is
dependent onX and – on the contrary – directly observable. HMMs have established themselves
as the standard approach used to model the temporal structure of speech in automatic speech
recognition ([PJP15]).

Definition 2.1.1. A Markov chain or Markov process is a stochastic model describing a se-
quence of possible events in which the probability of each event depends only on the previous
event.

Formally, a Markov chain is a sequence of random variables X1, X2, X3, . . . satisfying the
Markov property

P (Xn+1 = xn+1 | X1 = x1, . . . , Xn = xn) = P (Xn+1 = xn+1 | Xn = xn).

A hidden Markov model traverses through several time steps. In each time step, it attains
a distinct state and – based on the state attained – emits a symbol. Modeling the state
transition process is undertaken by a Markov chain. Thus, the HMM changes its state based
on a probability distribution that is only dependent on the state it’s currently in. It’s called
hidden, because the exact state sequence is not directly observable from outside the model.

However, there’s a second stochastic process that is dependent on this hidden process. This
second process is observable; it emits symbols that are said to be output by the HMM. The
probabilities defining which symbol is emitted at each time step are determined by the state
the model is currently in.

In this thesis – as conventional in ASR and somewhat predetermined by finite precision com-
puters – only discrete-time HMMs that likewise output discrete symbols are considered. Thus,
let T,N,K ∈ N, where T denotes the number of time steps the model traverses. In each time
step, the HMM is in one of N possible states and emits one of K possible symbols.

Definition 2.1.2. A hidden Markov model with N states and K observable symbols that tra-
verses T time steps is completely defined as λ = (Q,O, π,A,B) with

3



2.1 Hidden Markov Models

(i) A finite set of states Q := {Q1, Q2, . . . , QN}, which are the possible values of the Markov
chains random variables. The HMM traverses a sequence of attained states q = q1q2 . . . qT ,
where qt ∈ Q for t ∈ {1, . . . , T}.

(ii) A set O := {O1, O2, . . . , OK} of K observable symbols that are emitted by the second
stochastic process as o = o1o2 . . . oT with ot ∈ O for t ∈ {1, . . . , T}.

(iii) The initial probabilities, defined by a probability distribution π, which gives the probability
for starting in state Qi as πi := P (q1 = Qi) for i ∈ {1, . . . , N}.

(iv) A matrix A ∈ [0, 1]N×N of state transition probabilities, defining the conditional proba-
bilities of transitioning between states as A = (aij), where aij = P (qt = Qj | qt−1 = Qi)
for i, j ∈ {1, . . . , N} and t ∈ {2, . . . , T}. Note that aij does not take into account the
current time step t, so state transition probabilities are time-invariant.

(v) A matrix B ∈ [0, 1]N×K of emission probabilities, defining the conditional probabilities
of emitting symbol Oj in state Qi as B = (bij), with bij = P (ot = Oj | qt = Qi) for
i ∈ {1, . . . , N}, j ∈ {1, . . . , K} and t ∈ {1, . . . , T}. Sometimes bi(Oj) is written instead of
bij, as this allows for notation such as bi(ot). Similar as with A, the emission probabilities
given by B are time-invariant.

HMMs can conveniently be depicted similar to the way finite-state automata oftentimes are.
For example, the HMM in figure 2.1 consists of N = |Q| = 2 states and can output K = |O| = 2
different symbols. Its states are given as Q = {Q1, Q2} and the set of symbols is O = {O1, O2}.
The dotted arrows coming out of the start label depict the initial probabilities π1 and π2 for
starting in state Q1 or Q2 each. The probabilities for transitioning between states are indicated
as arrows a1,1,1,2 , a2,1 and a2,2. Those for emitting symbols are labeled b1,1, b1,2, b2,1 and b2,2.

start

Q1 Q2

O1 O2

π1 π2

a1,1

a1,2

b1,1

b1,2

a2,2
a2,1

b2,1

b2,2

Figure 2.1: Example of an HMM with N = K = 2. The probabilities for starting in state Qi

are given by πi. The variable aij determines the probability for transitioning from
state Qi to Qj and bij gives the probability for outputting symbol Oj while in state
Qi.

Note that this visualization does not take into account the time dimension. The behavior of
an HMM over time can be depicted in a trellis or lattice diagram.

2.1.1 The Decoding Problem

Given the limited information an HMM reveals towards observers, there are several problems
that can be formulated concerning the acquisition of more information. One of these problems
– the most relevant one regarding this thesis – is the Decoding problem.
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2.1.2 The Viterbi Algorithm

Definition 2.1.3. The Decoding problem for HMMs is defined as follows:
Given an HMM λ and a possible observation sequence o = o1o2 . . . oT , what is

q∗ := argmax
q∈QT

P (q, o | λ),

the most probable sequence of states the HMM might have attained while outputting o.

In this thesis, an HMM is used to model different phonemes as states. Their particular emission
probabilities model the probabilities of the phoneme to correspond to a certain feature vector,
i.e. a processed fraction of recorded speech. The solution to the decoding problem thus yields
the most probable sequence of phonemes, which is equivalent to an alignment of audio recording
and phonetic transcript. The exact process is further described in chapter 4.1.

2.1.2 The Viterbi Algorithm

The Viterbi algorithm calculates the most probable state sequence q∗ = q∗1 . . . q
∗
T attained by

an HMM while emitting a given sequence of symbols o = o1 . . . oT . It thus solves the Decoding
problem by determining q∗ = argmaxq∈QT P (q, o | λ). In algorithm 1, the Viterbi algorithm is
given in pseudo code. This depiction is based on [RJ86].

Here, δt(i) describes the probability to end up in state Qi at time step t on a most probable
path. Note that this is not the same as the probability to end up in state Qi summed over all
possible paths.

In order to calculate these probabilities, the values for δ1(i) are initialized by multiplying the
probability πi to start in state Qi at time step 1 with the probability bi(o1) to output symbol
o1 in state Qi, resulting in δ1(i) = P (Qi, o1 | λ) = πibi(o1). The other values of δt can then be
calculated recursively over all time steps by setting δt(j) = max1≤i≤N [δt−1(i)aij]bi(ot) for every
possible next state j, as dt−1(i)aij describes the probability to end up in state Qi at time step
t− 1 and then make the transition to Qj. Thus, dt(j) holds the maximum probability to attain
state j in time step t, again constrained to a most probable path. This calculation also yields
the most probable state in the previous time step, given by Ψt(j) = argmax1≤i≤N [δt−1(i)aij].

After recursively calculating all states maximum probabilities δt(i) for each time step and the
respective most probable previous states, the results can be obtained as follows: The probability
of the most probable state sequence is given by the probability to arrive at the most probable
last state, P ∗ = max1≤i≤N [δT (i)]. The actual sequence of states can then be obtained by
collecting the most probable previous states in reverse order: q∗t = Ψt+1(q

∗
t+1).

The complexity of this implementation is O(TN2), determined by the main for-loop that loops
over all time steps, contributing the factor T , and state transitions, contributing the factor N2.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are a method of computation that is roughly inspired by the
way biological brains work ([Ros58], [MP43]). While the central concepts inherent to connec-
tionist models have been around for about half a century now, they could only recently begin
to develop their true potential, as computing power and available data massively increased.
During the last decade, connectionist models have reached an extensive prevalence, mostly be-
cause of their unmatched classification abilities. They are ubiquitously used for a variety of
recognition and prediction tasks.
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2.2 Artificial Neural Networks

Algorithm 1: The Viterbi Algorithm

Data: HMM λ = (S, V, π, A,B), output sequence o = o1 . . . oT
Result: Probability P ∗ of most probable state sequence q∗ = q∗1 . . . q

∗
T

1 for 1 ≤ i ≤ N do

2 δ1(i) = πibi(o1) // initialize the probabilities for all states in t = 1
3 end

4 for 2 ≤ t ≤ T do // for all time steps
5 for 1 ≤ j ≤ N do // for all next states
6 δt(j) = max1≤i≤N [δt−1(i)aij]bi(ot) // calculate each states probability recursively
7 Ψt(j) = argmax1≤i≤N [δt−1(i)aij] // remember the most probable previous state

8 end

9 end

10 P ∗ = max1≤i≤N [δT (i)] // total probability of the most probable state sequence
11 q∗T = argmax1≤i≤N [δT (i)] // most probable state in the last time step
12 for T − 1 ≥ t ≥ 1 do

13 q∗t = Ψt+1(q
∗
t+1) // build the most probable state sequence

14 end

In this thesis, the classification capabilities of artificial neural networks are utilized for classi-
fying phonemes. Traditionally, HMMs have used Gaussian mixture models (GMMs) for pro-
ducing the emission probabilities of their continuous observations in what is called a hybrid
HMM/GMM system. However, due to the excellent classification results of ANNs, these sys-
tems are nowadays usually replaced by hybrid HMM/ANN systems ([MDH11]). In such a
system, it’s the ANNs task to supply the HMM with posterior emission probabilities for all
HMM states/phonemes, i.e. produce probabilities P (F | Q), where F is a feature vector of
recorded speech and Q corresponds to a (sub-)state1 of the HMM.

This section is based on [RN02] and [Goo+16].

2.2.1 Classification Problems

Classification problems are a special case of supervised learning, itself being a subfield of ma-
chine learning.

Definition 2.2.1. The task of supervised learning is defined as follows: Given a training set
of N sample input-output pairs

(x1, y1), . . . , (xN , yN),

where each pair is determined by an unknown function f as yi := f(xi), find a function h which
approximates the function f .

A supervised learning problem is called classification problem when the possible values of y are
finitely many. In this case, the y values are also called labels of their corresponding x values.
When there are infinitely many possible y-values, the task is called regression.

Oftentimes supervised learning tasks are also differentiated by their property of being separable
in a linear way (or by a linear classifier), giving rise to the designation of tasks as either linear

1It’s sometimes useful to use multiple states (substates) to model a single phoneme.
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2.2.2 Feedforward Neural Networks

or non-linear. A popular example of a non-linear classification problem is learning the XOR-
function, defined as

⊕(x1, x2) = x1 + x2 mod 2 =

{︃
1 if x1 ̸= x2

0 if x1 = x2

for x1, x2 ∈ {0, 1}. The different outputs of the XOR-function can not be separated in a linear
way, i.e. by a single linear separator, as is shown in figure 2.2, see also [LP91].

x1

x2

x1

x2

Figure 2.2: A depiction of an arbitrary linear classification problem on the left and the XOR
classification problem on the right. The outputs of the XOR-function can not be
separated using a single linear separator. White marks outline data points of class
0, black marks those of class 1.

In order to assess the performance of a supervised learning method, the whole data set is
usually split up into disjoint training and test sets that are used for training and evaluation,
respectively. The goal is not only to approximate the given pairs (x1, y1), . . . , (xN , yN) of the
training set, but to achieve generalization. That is, to perform well (approximate f well) even
on previously unseen pairs of the test set, that were not part of the training set. Not reaching
generalization is a problem known as overfitting the data.

Error measures

In order to assess the performance of a supervised learning method, one can apply different
error measures. For a binary classification task, data points are classified into the two classes
positive and negative. When considering multiple classes instead, the class at hand would be
described as positive and all other classes combined as negative. Both positive and negative
predictions can be correct (true) or incorrect (false).

Table 2.1 shows four common error measures. Accuracy intuitively describes the proportion of
predictions that were correct. Precision describes the proportion of positive predictions that
were correct, while recall describes the proportion of correctly predicted positives. Finally, the
F1-Score is the harmonic mean of recall and precision, taking on a maximum value of 1 if both,
precision and recall, are maximal, and a minimum value of 0 if one of them is 0.

2.2.2 Feedforward Neural Networks

Feedforward neural networks are the simplest type of neural networks. They do not contain
any cycles in their connections.

7



2.2 Artificial Neural Networks

Name Definition Calculation

Accuracy
# correct predictions

# total predictions

TP + TN

TP + TN+ FP + FN

Precision
# correct positive predictions

# total positive predictions

TP

TP + FP

Recall
# correct positive predictions

# total true positives

TP

TP + FN

F1-Score
2

recall−1 + precision−1
2 · precision · recall

precision + recall

Table 2.1: Different error measures for classification tasks. The abbreviations are TP for true
positives, TN for true negatives, FP for false positives and FN for false negatives.

The Perceptron

The perceptron ([Ros58]) is a simple classifier for binary linear classification problems and the
simplest feedforward neural network there is. It’s modeled as a simplified version of a biological
neuron, adopting the idea that several incoming action potentials are added up in a weighted
sum and – in case a certain threshold is exceeded – make the receiving neuron trigger its own
action potential as well.

Formally, a perceptron can be described as a single computing unit, receiving N real-valued
inputs x1, . . . , xN ∈ R and outputting a value between 0 and 1. Inside the perceptron, these N
input values are first multiplied by N weights w1, . . . , wN ∈ R. The weighted inputs are then
summed up, constituting a weighted sum, to which a single bias b ∈ R is added as well. At
last, an activation function is applied on the result of the previous steps. In the case of the
standard perceptron, this is a Heaviside step function, which maps all positive values to 1 and
all other values to 0, thus performing classification in classes 0 and 1. This whole calculation
process is also illustrated graphically in figure 2.3.

Activation
function

∑︁
w2x2

...
...

wNxN

w1x1

b1

inputs weights

Figure 2.3: A graphical representation of the perceptron model. TheN inputs are supplemented
with a bias entry b. After totaling the weighted inputs and the bias, the result is
fed into a Heaviside step function.

To simplify this calculation, the input scalars and weight scalars can be stacked into an input
vector x ∈ RN and a weight vector w ∈ RN respectively. The weighted sum

∑︁N
i=1 xiwi can thus

be described as the dot product x · w. The bias scalar b can also be prepended to the weight
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2.2.2 Feedforward Neural Networks

vector w as zeroth value w0. In this case, a 1-entry has to be prepended to the input vector x
as zeroth value x0 = 1 as well, yielding

x′ =

(︃
1
x

)︃
=

⎛⎜⎜⎜⎝
1
x1
...
xN

⎞⎟⎟⎟⎠ and w′ =

(︃
b
w

)︃
=

⎛⎜⎜⎜⎝
b
w1
...

wN

⎞⎟⎟⎟⎠ .

The whole calculation can then be written in a single step, using the dot product, as

x · w + b =
N∑︂
i=1

xiwi + b =
N∑︂
i=0

x′iw
′
i = x′ · w′.

In the remainder of this thesis, biases are assumed to be included in the usual weight matrices.

The perceptrons decision rule can now easily be defined as a threshold function that maps an
input vector x to an output value f(x) as

f(x) =

{︄
1 if x · w + b = x′ · w′ > 0,

0 otherwise.

This way, the perceptron can classify a given vector x ∈ RN into one of two classes 0 and 1. It
does so by implicitly spanning a linear decision boundary in the form of a hyperplane, specified
by the equation wx + b = 0, defining two disjoint classes inside the RN . This hyperplane can
be learned iteratively by adjusting the perceptrons bias and weights. The directions for these
adjustments are given by evaluating the perceptron on sample data and correcting on each
wrong classification.

Perceptron Training

As the perceptron is a supervised learning method, there is a training set S = {(x1, y1), . . . , (xS, yS)}
with xi ∈ RN , yi ∈ {0, 1} available for training, which is used to adjust the perceptrons param-
eters accordingly.

The training algorithm is outlined in pseudo code as algorithm 2. Here, let w′, x′s ∈ RN+1

denote the extended weight and input vectors, as described above. Furthermore, let x′s,i denote
the i-th component of vector x′s.

Algorithm 2: The Perceptron Training Algorithm

Data: training set S = {(x1, y1), . . . , (xS, yS)}, learning rate η
Result: Weights w′ after training

1 w′i := 0N+1 // initialize the weights and bias as zero
2 for (xs, ys) ∈ S do // for all training data
3 x′s := xs.prepend(1)
4 ŷs := f(x′s) // evaluate the perceptron for x′s
5 w′ := w′ + η(ys − ŷs)x

′
s // adjust the weights

6 end

The perceptron starts with all weights and the bias initialized as 0 and iteratively updates them
along evaluating all labeled training data. This learning process happens as follows:

9



2.2 Artificial Neural Networks

For every pair of labeled data (xs, ys) in the training set S, the perceptrons current prediction of
the classification is calculated as ŷs = f(x′s). This prediction can be either correct or incorrect,
and can be checked against the provided label ys. The comparison is done implicitly while
updating the weights in line 5. In the following, we examine both possible cases:

Case 1: Prediction correct If the prediction was correct, i.e. ŷs = ys, then the error
e := ys − ŷs is equal to zero, so the weights w′ := w′ + η(ys − ŷs)x

′
s = w′ + η0x′s = w′ are not

updated.

Case 2: Prediction incorrect However, if the prediction was incorrect, i.e. ŷs ̸= ys, then
the error e := ys − ŷs is either −1 or 1. Thus, the update is described by

w′ := w′ + η(ys − ŷs)x
′
s =

{︄
w′ + ηx′s if e = 1,

w′ − ηx′s if e = −1.

The adjustment is individual on a per-weight basis. In case the perceptrons prediction was
wrong, each of the weights w′i is corrected by ηx′s,i into the corresponding direction.

The training loop, i.e. lines 2 through 6, can be repeated more than once, either a fixed
amount of times or until the average error per iteration reaches some predefined threshold.
Each iteration of this loop is called a training epoch. The learning rate η ∈ [0, 1] specifies the
volatility of the perceptrons learning process; the higher this rate, the stronger the perceptron
updates its weights on new observations.

For linear classification problems, this training algorithm always converges ([Nov63]).

The Multilayer Perceptron / Feedforward Neural Network

A multilayer perceptron (MLP) or feedforward neural network consists of multiple layers of
connected perceptrons, in this context also called neurons or nodes. The outputs of the first
layer of perceptrons act as inputs to the next layer, which in turn supply the data for the
following layer etcetera. In contrast to a single perceptron, the MLP is able to classify data
that are not linearly separable, e.g. the XOR-function, provided a non-linear activation function
is used.

If the perceptron is the connectionist analogy to a single biological neuron, then the multilayer
perceptron is the equivalent to multiple linked neurons, passing along, reinforcing or inhibiting
their action potentials.

Structure of the Feedforward Neural Network

An MLP consists of a minimum of three layers, an input layer, one or multiple hidden layers
and an output layer. This structure is graphically displayed in figure 2.4. Each layer, except for
the input layer, consists of one or multiple perceptrons. The input layer just feeds the inputs
into the network by distributing each input value to every perceptron in the first hidden layer.
In a fully connected MLP, all outputs of the previous layer are taken as inputs into every single
perceptron of the next layer, spanning complete bipartite graphs in between layers.

The structural parameters of an MLP are hyperparameters, i.e. they can’t be learned by the
MLP itself and have to be chosen appropriately or otherwise determined. The amount of nodes
in the input and output layer however are oftentimes defined by the problem and data at hand.
If the (preprocessed) input data consists of vectors in RN , then N input nodes receive this
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x1
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Output
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Figure 2.4: A graphical representation of an example multilayer perceptron. The N = 4 inputs
are fed into the input layer and distributed to the hidden layer as input values to
all of the five hidden nodes. All the outputs from the hidden layer are in turn
distributed to the output layer as inputs to the single output node. Every node
in this MLP consists of a whole perceptron, performing summation of its inputs,
adding its bias and applying its activation function separately.

data in the input layer. The size of the output layer is generally determined by the desired
output. For binary classification problems, the output layer would consist of a single neuron
that either applies a sigmoid activation function2 σ to produce a probability distribution over
the two possible classes or a Heaviside step function to clearly output the presumed class, as
a single perceptron does. A multi-class classifier would have one neuron in the output layer
for each class and apply a softmax activation function σ(x)i =

exi∑︁N
j=1 e

xj
to model a probability

distribution over all classes.

Forward pass

The process of passing information through the network in the default direction – starting at the
input layer, traversing all hidden layers and ending in the output layer – is called a forward pass
through the network. A single forward pass consumes one data point and outputs a prediction,
based on the input data and the networks parameter configuration. It is performed to classify
a real data point after the network has been trained, or during training, to produce predictions
which are then used to adjust the networks parameters.

In a feedforward neural network, layers may differ in sizes, but in general, they all work the
same way. An exception is the input layer, which just passes the input data into the network.
As the networks layers are just linked batches of perceptrons, each hidden or output layer acts
as follows:

Let x :=
(︁
x1 . . . xI

)︁T
denote the I input values for the layer at hand (i.e. the output of

the previous layer) and n1, . . . , nN the N neurons in the layer at hand. Every single of the N
neurons in the layer takes all the data from the previous layer as input. Thus, every neuron
defines weights for I inputs, resulting in NI different weights for the layer at hand. Let wi,j

denote the weight for the connection between neuron ni and input value xj. The weight vector
for neuron ni can thus be defined as

wi :=
(︁
wi,1 wi,2 . . . wi,I

)︁
2See table 2.2.
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and the weighted sum for neuron ni can be computed as

si =
I∑︂

j=1

wi,jxj = wix.

Let W be the weight matrix for this layer, defined as

W :=

⎛⎜⎝w1
...

wN

⎞⎟⎠ =

⎛⎜⎝w1,1 . . . w1,I
...

. . .
...

wN,1 . . . wN,I

⎞⎟⎠ .

Computing the weighted sums for all neurons n1, . . . , nN can now be condensed to a single
matrix multiplication

s := Wx =

⎛⎜⎝w1,1 . . . w1,I
...

. . .
...

wN,1 . . . wN,I

⎞⎟⎠
⎛⎜⎝x1

...
xI

⎞⎟⎠ =

⎛⎜⎝ s1
...
sN

⎞⎟⎠ .

Usually, the activation functions inside a certain layer do not differ, so applying them compo-
nentwise can be written as

o := σ(s) =

⎛⎜⎝σ(s1)
...

σ(sN)

⎞⎟⎠ ,

defining the output vector o of this layer.

Because of the separation of the network in L separate layers, the computation inside each
layer can be seen as a function fl : RNl−1 → RNl , l ∈ {1, . . . , L}, taking Nl−1 inputs from the
previous layer and outputting Nl values. Each layer function fl is defined as

fl(x) = σl(W
lx),

for l ∈ {1, . . . , L}, activation functions σl : RNl → RNl and weight matrices W l ∈ RNl×Nl−1 .
The layer function f1 for the input layer is given as the identity

f1 ≡ id = id(IN0x),

by setting σ1 ≡ id as the identity function and W 1 = IN0 as the identity matrix.

Thus, the whole networks forward pass can be described as

o := (fL ◦ · · · ◦ f1)(x) = fL(. . . f1(x)).

Non-linear Activation Functions

Non-linear activation functions or Non-linearities introduce non-linearity in between the linear
computations of the MLP layers and thus play an essential part in the MLPs ability to perform
non-linear classification. Without non-linear activation functions, the stacked layers of any MLP
could be reduced to a simple two-layer model, essentially leaving over only a single or multiple
detached perceptrons. This is the case because a single matrix multiplication is sufficient for
calculating a linear combination of the input vectors.

As indicated before, not every neuron in the model has to use the same activation function. A
few common non-linear activation functions are listed in table 2.2.
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Name Function Derivative Plot

Sigmoid σ(x) =
1

1 + e−x
σ′(x) = σ(x)(1− σ(x))

−4 −2 0 2 4

0

0.5

1

x

σ
(x
)

tanh tanh(x) =
ex − e−x

ex + e−x
tanh′(x) = 1− tanh(x)2

−4 −2 0 2 4

−1

0

1

x

ta
n
h
(x
)

ReLU ReLU(x) = max(0, x) ReLU′(x) =

{︄
0 x < 0,

1 x > 0.

−4 −2 0 2 4

0

2

4

x
R
eL

U
(x
)

Table 2.2: Non-linear activation functions.

Especially the output layer oftentimes uses a different activation function than the other layers
in the network. A popular example is the softmax function, which normalizes the output of the
network to a probability distribution over the possible output classes. It’s defined as

σ(x)i =
exi∑︁N
j=1 e

xj

.

2.2.3 Neural Network Training

The training technique for MLPs is similar to the one used for single perceptrons: Labeled
training data is used to produce predictions from the MLP in a forward pass and the resulting
error, defined by the deviation of this prediction from the actual label, is used to adjust the
MLPs parameters.

However, adjusting the weights of all the neurons involved in the calculation is more complex
than for a single perceptron. The error has to be propagated back through the whole network
of layers in what is called a backward pass and each weight has to be updated only insofar
as it contributed to the error. Propagating the error back through the network is performed
according to the backpropagation algorithm. The method to determine how to adjust the weights
is called gradient descent.

(Stochastic) Gradient Descent

Gradient descent is an iterative method for finding a local minimum of a differentiable mul-
tivariate function F : RN → R. The basic idea is that for a given point x ∈ RN , in whose
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neighborhood F is defined and differentiable, the direction of fastest decrease is given by the
negative gradient −∇F (x). Iterating

x0 := x

xi+1 := xi − ϵ∇F (xi)

for sufficiently small ϵ ∈ R+, results in the xi moving against the gradient direction and thus
towards a local minimum of F near x. The initial value x0 strongly affects which local minimum
the sequence converges to.

Stochastic gradient descent (SGD) is a stochastic approximation of gradient descent optimiza-
tion, i.e. the actual gradient is approximated by not using the whole data set for its compu-
tation, but only a smaller, randomly selected subset thereof. This offers a trade-off between a
lower convergence rate and faster iterations.

Now, let L : RN × RN → R be a function that takes as input a ground truth y, e.g. the label
of a data point in the training set, and an estimation ŷ, e.g. the prediction produced by an
MLP. Based on these inputs, it outputs some quantification of the prediction error. Such a
function is called a loss function. Because the loss function is minimized if and only if the MLPs
performance is optimized, SGD can be performed on L to iteratively minimize the loss value
and conversely improve the MLPs prediction performance. Note that when doing SGD on a
loss function, one does not alter the input data, but the weights of the MLP; the input data is
assumed to be constant. The process can be described as performing SGD on L(y, F (x,w)) with
respect to the variable w, where F is a function that evaluates the MLP defined on parameters
w for the input x. How exactly each parameter in the MLP has to be altered in order to move
against the gradient direction is calculated by the backpropagation algorithm.

Loss Functions

Two commonly used loss functions for neural networks are the cross-entropy and mean squared
error (MSE) losses.

Cross-entropy or log loss is used to measure the performance of a neural network outputting
probability values between 0 and 1, for example through a softmax output layer. The cross-
entropy for N classes is defined as

LH(y, ŷ) := −y · log ŷ = −
N∑︂
i=1

yi log ŷi,

where y is the label, usually a one-hot representation (having yi = 1 if and only if class i is the
correct one, else 0) of the correct classification and ŷ is the network output.

The mean squared error loss is commonly used for regression tasks, e.g. for predicting contin-
uous variables. It is simply defined as the mean squared error over all network outputs,

LMSE(y, ŷ) :=
1

N

N∑︂
i=1

(yi − ŷi)
2,

where again y is the label and ŷ is the networks output.

The Backpropagation Algorithm

The backpropagation algorithm is used to compute the gradient of a loss function with respect
to the weights of an MLP. Stochastic gradient descent in combination with the backpropagation
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algorithm is the de facto standard way of training artificial neural networks ([RHW85]). This
section is adapted from [Nie15].

As already defined for the forward pass, let

ŷ := F (x) = (fL ◦ · · · ◦ f1)(x)

denote the output of a feedforward neural network on L layers for input x, where fl computes
the output of layer l as

fl(x) = σl(W
lx),

with activation function σl and weight matrix W l.

The loss for each data point (x, y) in the training data is then defined as

L(y, ŷ) = L(y, F (x)).

In order to apply stochastic gradient descent with respect to the parameters specifying the
evaluation of F (x), this loss value’s gradient for each parameter of the network has to be
calculated individually. This is achieved by applying the chain rule to calculate the partial
derivatives

∂L
∂wl

ij

.

However, for efficiency reasons, backpropagation avoids duplicate calculation by calculating the
gradient of the weighted input for every layer, denoted as δl, starting from the last layer L.
As each weight in W l only affects the loss through its effect on the immediate next layer, δl

contains all the data required for computing the gradient in layer l. Furthermore, the preceding
layers l − 1, . . . , 1 can be computed recursively.

As before, let sl := W lol−1 be the weighted inputs in layer l and ol := σl(s
l) be the output of

layer l.

Then the derivative of the loss in terms of the input is given as the total derivative

dL
dx

=
dL
doL

doL

dsL
dsL

doL−1
doL−1

dsL−1
. . .

do1

ds1
ds1

dx

=
dL
doL

σ′LW
Lσ′L−1W

L−1 . . . σ′1W
1,

because for l ∈ {1, . . . , L} and o0 = x one has

dol

dsl
=

dσl(s
l)

dsl
= σ′l and

dsl

dol−1
=

dW lol−1

dol−1
= W l.

The gradient∇xL of the loss in terms of the input is then obtained by transposing the derivative
of L in terms of x, as

∇xL = (
dL
dx

)T = (W 1)Tσ′1(W
2)Tσ′2 . . . (W

L)Tσ′L∇oLL.

Backpropagation evaluates this expression from right to left, propagating the error from layer
L all the way back through the network. This is done recursively, by starting with

δL = σ′L∇oLL
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and recursing

δl = σ′l(W
l+1)T δl+1

= σ′l(W
l+1)T . . . (WL)Tσ′L∇oLL

for l ∈ {L− 1, . . . , 1}. The gradient for the weights in layer l is then determined as

∇W lL = δl(ol−1)T .

This recursive computation of the gradients per layer is called the backpropagation algorithm.

Adam Optimization

The Adaptive Moment Estimation (Adam) optimization method ([KB14]) can be used to train
a network instead of the classical stochastic gradient descent described above.

While SGD keeps track of a single global learning rate η for all weight updates, which also
doesn’t change during the training process, the Adam algorithm maintains individual learning
rates for each network parameter, that are separately adapted during the training process.
These individual learning rates are computed from estimates of the first and second moments
of the gradients. More specifically, Adam calculates an exponential moving average of the
gradient and the squared gradient.

Adam optimization thus combines the methods introduced in the Adaptive Gradient Algorithm
(AdaGrad, [DHS11]) and Root Mean Square Propagation (RMSProp, which wasn’t published
in a formal academic paper, but appeared in the lecture slides of a Coursera online class on
neural networks by Geoffrey Hinton from the University of Toronto3).

Overfitting and Dropout

Especially for larger neural networks, overfitting is a common problem that appears when the
amount of the networks parameters are disproportionally large to the complexity of the data
([Die95]). The goal of training a neural network is to have it perform well on data that was
not encountered during its training. However, when the network has the capacity to specialize
on the training data instead of generalizing from it, overfitting occurs. That is, the network
learns to perform well on the training data, but poorly on previously unseen data. A typical
symptom of this problem is a shrinking training error, while the validation error goes up.

A commonly used technique to alleviate overfitting is called dropout ([Hin+12]). Overfitting
can be greatly reduced by randomly omitting a certain percentage, oftentimes half, of the
networks neurons on each training sample. This method forces each neuron to learn a feature
that is generally helpful in the whole network as opposed to co-adapting to other neurons. The
effects of dropout on an example feedforward network are depicted visually in figure 2.5.

Minibatches and Batch Normalization

When using minibatches, the gradients for updating the weights during training are calculated
across a smaller subset of the entire data set instead of the entire batch/epoch for gradient
descent or a single training example for stochastic gradient descent.

Batch normalization or batch norm ([IS15]) is a method of normalizing the input to a networks’
layers by recentering and rescaling it for each minibatch in order to stabilize the learning process
and reduce the number of training epochs required.

3http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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2.2.4 Time Delay Neural Networks

×
×

×

×

×

×

×

Figure 2.5: This figure shows a possible effect of dropout with p = 0.5 on a network with three
layers. On the left, the network without dropout – as it would be used during
evaluation – is shown, on the right, about half of the networks neurons have been
dropped randomly – as might happen during training.

2.2.4 Time Delay Neural Networks

The occurrence of phonemes inside an utterance is not independent from the surrounding con-
text, as speech is a temporal construct. Therefore, when classifying phonemes, it’s oftentimes
beneficial to not only consider a single audio feature, but a broader range. Time Delay Neural
Networks (TDNNs) specialize in this ability. In fact, they were first developed for the exact
task of phoneme classification ([Wai+89]).

In principle, a TDNN is a feedforward neural network. However, as opposed to receiving one
feature vector of speech at a time, it accepts a whole sequence of feature vectors as its input.
Furthermore, instead of using individual weights for every single connection, some weights are
shared in what is called a shift invariant connection, much like a filter in a convolutional neural
network ([LeC+99]). Overlapping two-dimensional fields of inputs are weighted and summed
together before being passed through an activation function to constitute the data present in
the next layer. This can be thought of as a two-dimensional filter moving across the field of
input neurons. The weights of this moving filter are shared among all the shifted fields it is
applied to.

Therefore, every neuron receives information of a whole range of feature vectors over a certain
time frame. It can thus extract temporal information as well as the temporal context of a
feature vector to be classified, which enables improved classification results ([PPK15]).

When performing backpropagation on a TDNN, the gradients are calculated for every time-
shifted copy of the network and then averaged, so shared weights remain equal among all their
instances.

An example of a TDNN is described in more detail in figure 2.6.

2.2.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are an example of non-feedforward networks. While feed-
forward neural networks are characterized by only passing information through their layers in
a one-way fashion, RNNs additionally utilize connections that loop back into the same layer.
Another difference is that they process sequential input over multiple time steps. In each step,
a hidden node in an RNN passes along its value not only to the nodes in the next layer, but
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Figure 2.6: An example TDNN for classifying the phonemes /b, d, g/, adapted from [SSW91].
The network consists of three feedforward layers. Its input layer takes a whole
feature vector sequence as input, spanning 15 frames of 16 features each, thus there
are 15× 16 input neurons. Connections between each layer are shift invariant, i.e.
in the first hidden layer, the same 3× 16 filter is used for every of the 13 different
regions of input it is applied to. The filter maps each region of 3 × 16 inputs to
8 output values in the first hidden layer. Therefore, there are 3 × 16 × 8 different
weights between the input and first hidden layer. The second hidden layer also
employs a shift invariant filter for weighting its input values. This time, the filter
size is 5× 8 and the 13× 8 input values are passed on to 9× 3 neurons, using only
5 × 8 × 3 different weights. Finally, the output layer applies another filter of size
9× 3 to map each filter region on 3 neurons, resulting in another 9× 3× 3 weights.
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2.2.5 Recurrent Neural Networks

also to itself in the next time step. Conversely, it also takes into account its previous state
when processing new input.

An example topology of an RNN is described in figure 2.7.

Similar to TDNNs, RNNs possess an increased capability for handling sequential or temporal
data and are thus highly relevant for speech recognition tasks.

A A A A=A

o0

x0

o1

x1

o2

x2

oN

xN

ot

xt . . .

. . .

Figure 2.7: An example RNN topology. The inputs xt ∈ {x1, . . . , xN} are consumed over
multiple time steps. In each time step, the hidden layers forward their hidden
representations to the next time step and – conversely – process the passed on
representation from the previous time step. On the left side, the actual network
topology is shown, on the right side it’s presented in its unrolled state.

Elman and Jordan networks

Simple examples of RNNs are the Elman and Jordan networks ([Elm90]). They both consist
of three feedforward layers; input, hidden and output.

In the Elman network, every node in the hidden layer has an additional connection to an
individual context unit, which saves the hidden neurons output and forwards it to that same
neuron in the next time step. Context units have their inbound weights set to constant 1. Their
outbound weights are defined in a weight matrix W u and are learned together with the other
parameters of the network. The forward pass in an Elman network is therefore specified by the
assignments

ht = σh(W
hxt +W uht−1)

ot = σo(W
oht),

where ht describes the output of the hidden layer at time step t and ot describes the output of
the output layer at time step t.

The Jordan network functions similarly to the Elman network, except for the context units
taking their input from the output layer instead of the hidden layer. They still forward their
saved state to the hidden layer in the next time step:

ht = σh(W
hxt +W uot−1)

ot = σo(W
oht).

Backpropagation Through Time

The typical training procedure for feedforward networks can be adapted to work for RNNs.
Backpropagation for RNNs is called backpropagation through time (BPTT). In order to perform
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backpropagation on a recurrent network, the network is first unrolled, as shown in figure 2.7.
The unrolled network is now equivalent to a feedforward network with shared weights. Thus,
the gradients can then be calculated accordingly, taking into account all the occurrences of a
single weight and summing the weight updates.

RNNs are prone to a problem known as vanishing gradients. Gradient descent becomes in-
creasingly inefficient for deeper network structures, as gradients are propagated by applying
the chain rule, effectively multiplying – and thus further reducing – small numbers from the
interval (0, 1). As unrolled RNNs are essentially very deep feedforward neural networks with
shared weights, the vanishing gradient problem becomes problematic when processing long
input sequences.

This problem arises, because in backpropagation, ht′ = σh(W
hxt + W uht−1) is differentiated

with respect to ht for t
′ > t, which results in

∂ht′

∂ht

=
t′−t∏︂
k=1

W uσ′h(W
uht′−k)

= (W u)t
′−t⏞ ⏟⏟ ⏞

(1)

t′−t∏︂
k=1

σ′h(W
uht′−k)⏞ ⏟⏟ ⏞

(2)

.

If the spectral radius ρ(W u) of the weight matrix is less than 1, the first factor decays expo-
nentially fast in t′ − t. Furthermore, if the activation function’s derivative is less than 1 for all
values – as is the case for the sigmoid function –, the second factor tends to zero as well. The
problem in the first factor persists even for alternative activation functions, like ReLU.

The vanishing gradient problem is shown to be severe both theoretically and experimentally
for tasks involving long-term dependencies in [BSF94].

2.2.6 Long Short-Term Memory

Long short-term memory (LSTM) is a special recurrent network architecture, developed to
mitigate the vanishing gradient problem of traditional RNNs. Like an RNN, an LSTM preserves
its state for use during later time steps. However, in LSTMs this is done in a more fine-tuned
way. In order to achieve this, an LSTM consists of gated neurons, called LSTM cells. These
cells not only save their last state and supply it as part of the input to the next time step, but
also modulate this saved state in more complex ways.

The LSTM cell

The structure of an LSTM cell is depicted in figure 2.8. Its central component is the internal
state ct that gets passed along through time. In each time step, old information can be forgotten
and new information can be added to this internal state. This forgetting/updating process is
handled by the cell’s forget and update gates, whose behavior is learned during training. The
updated state is then used to modulate the cells output in the output gate.

The cell’s forget gate is responsible for forgetting selected parts of the current cell state and it’s
the first gate to be applied on the incoming previous cell state. It takes as input the last hidden
state ht−1 and the current input vector xt, weighting, concatenating and processing them in a
sigmoid layer to produce the forget value ft. By multiplying this forget value ft ∈ σ(RN) =
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(0, 1)N pointwise with the incoming previous cell state ct−1, the i-th entry in the cell state can
either be kept intact ((ft)i ≈ 1) or forgotten ((ft)i ≈ 0):

ft = σg(W
fxt + U fht−1).

Next, the new information to be stored in the state vector is determined and applied. This is
done in the input/update gate. Another sigmoid layer on the weighted concatenation of ht−1
and xt is used to determine which parts of the cell’s state are to be updated. A tanh layer on
the same input produces the candidate values c̃t to be inserted into the state. Their pointwise
product constitutes the update value, which is then added to the cell state vector:

it = σg(W
ixt + U iht−1)

c̃t = tanh(W cxt + U cht−1).

This process of first selectively forgetting and then storing new data in the cell state constitutes
the whole update process of the state vector:

ct = ft ◦ ct−1 + it ◦ c̃t.

Finally, the cell produces an output vector as well. An unfiltered output vector ot is first
computed by feeding the weighted concatenation of ht−1 and xt into a sigmoid layer. As the
cell state should have an effect on the output as well, the state is fed into a pointwise tanh
function and then multiplied with the unfiltered output to produce the hidden state vector ht:

ot = σg(W
oxt + U oht−1)

ht = ot ◦ tanh(ct),

The computations inside an LSTM cell are thus given by the equations

ft = σg(W
fxt + U fht−1)

it = σg(W
ixt + U iht−1)

ot = σg(W
oxt + U oht−1)

c̃t = tanh(W cxt + U cht−1)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh(ct),

where ◦ is the Hadamard (element-wise) product, ft, it and ot denote the activation vectors of
the forget gate, input/update gate and output gate, ht is the hidden state vector of the cell, c̃t
is the cells update candidate vector and ct is the cells state vector; all at time t. The matrices
W x, Ux contain the weights for the respective gates x ∈ {f, i, o, c}. Besides the input vector xt,
a cell consumes the vectors ht−1 and ct−1 from the previous time step and produces a new pair
of ct and ht vectors.

LSTM Training

Similarly to the training process of RNNs, LSTMs can be trained using backpropagation
through time. While RNNs are prone to the vanishing and exploding gradients problem, LSTMs
mitigate the vanishing gradients problem by their use of gated neurons. Also, the cell’s state
is updated through addition instead of multiplication, which further combats the problem.
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2.2 Artificial Neural Networks
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Figure 2.8: The inside structure of an LSTM cell. Joining arrows represent the concatenation
of values, diverging arrows represent the copying of values. Each layer, marked red
in the graphic, applies a weight matrix and the denoted activation function to its
inputs. Every operator, marked green, only applies the denoted function to each of
the input values element-wise. The blue arrow shows how the cell state runs through
the whole construct, first being modified by the inputs and then itself influencing
the produced output.

An LSTM cell saves long term dependencies in its state ct = ft ◦ ct−1 + it ◦ c̃t. The gradient of
state ct with respect to its previous state ct−1 is given as

∂ct
∂ct−1

=
∂ft ◦ ct−1
∂ct−1

+
∂it ◦ c̃t
∂ct−1

= ft +
∂it ◦ c̃t
∂ct−1

.

Assuming the worst case scenario of ∂it◦c̃t
∂ct−1

vanishing, leaves the following gradient for cell state

ct′ with regard to state ct, t
′ > t:

∂ct′

∂ct
=

t′−t∏︂
k=1

fk.

Now, the fk’s diminish the gradient, but only by the same amount as they determined how
much information got passed from their respective states in the forward pass. Thus, the gradient
vanishes only insofar as the influence of the previous states vanishes.

However, the exploding gradient problem still persists. This can be mitigated by clipping the
gradient’s magnitude at a threshold.

Bidirectional LSTM

LSTMs successfully exploit temporal dependencies in the data in one direction. Oftentimes it’s
helpful to rely on such dependencies in the input in the backward direction as well. For this
purpose, bidirectional LSTMs (BiLSTMs) have been developed.
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2.2.6 Long Short-Term Memory

A BiLSTM consists of two LSTMs, which receive the same input sequence but pass their cell
states in opposite directions. Their outputs are then combined and form the output of the
BiLSTM network.

The structure of a BiLSTM network is outlined in figure 2.9.

. . . LSTM→ LSTM→ LSTM→ LSTM→ . . .

LSTM←LSTM←LSTM←LSTM←. . . . . .

x2 x3 x4 x5

h5h4h3h2

h→2 h→3 h→4

. . . . . .

h←3 h←4 h←5

Figure 2.9: Architecture of a BiLSTM network. The network consists of two unidirectional
LSTM networks, sharing the same input and producing a combined output by
processing the context in the two directions of time independently.

Stacked (Bi-)LSTM

A stacked (Bi-)LSTM consists of multiple layers of (Bi-)LSTMs. Each LSTM cell in a subse-
quent layer takes as input the output of the previous LSTM cell, thus allowing a more complex
processing of the sequence data. An example architecture of a stacked BiLSTM on two layers
is presented in figure 2.10.

LSTM cell

LSTM cell

x₁

LSTM cell

LSTM cell

LSTM cell

LSTM cell
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LSTM cell

LSTM cell

LSTM cell
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LSTM cell

LSTM cell
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…

…
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…

…

Figure 2.10: Architecture of a stacked BiLSTM network on two layers. The network is built
similarly to a BiLSTM network, but two stacked LSTM cells substitute each LSTM
cell.

23





3 Related Work

There are various topics that are related to the task and methodology this thesis is concerned
with. Examples range from directly related topics like multilingual phoneme recognition and
alignment to the application of cross-lingual methods in the field of ASR in general. Alterna-
tive approaches, like end-to-end systems, i.e. systems that are represented by a single model as
opposed to a hybrid HMM/ANN pipeline, are presented as well. Furthermore, there are inter-
esting methods that have been applied in the past to improve the performance of multilingual
systems, like modulation techniques.

Phoneme Classification

For the task of framewise phoneme classification – the task fulfilled by the ANNs utilized in
this thesis as well – [GS05] compares BiLSTMs to other ANN architectures. In the conducted
experiments, BiLSTMs performed significantly better than unidirectional ones. LSTMs were
also not only much faster to train than standard RNNs and feedforward networks, but also
slightly more accurate. It was shown that BiLSTM offer a great way to exploit the time-
dependencies in speech.

Multilingual Phoneme / Phone Classification

By supplementing the language-independent phone distributions that are normally used in
multilingual acoustic modeling with language-dependent phoneme distributions, [Li+20] was
able to improve performance by 2% phoneme error rate absolute. They were also able to
improve the phone recognition accuracy by 17% for unseen languages.

(Cross-lingual) Phoneme Boundary Detection

A different approach for detecting the boundaries of phonemes in speech recordings was pre-
sented in [Fra+16]. Using a BiLSTM, they were able to outperform the alternatives using
phoneme recognizers that were previously reported in the literature on the TIMIT data set.
Their experiments also showed promising results regarding cross-lingual tasks.

Modulation Techniques for Multilingual Recognition Tasks

In [MSW18], language adaptation techniques, i.e. modulating the hidden layers of the utilized
RNNs using Language Feature Vectors (LFVs), are introduced in order to decrease the error
rates in multilingual phoneme / grapheme recognition tasks. These LFVs are obtained from a
bottleneck layer in an additional network trained for language identification. Modulating the
layers by LFVs, instead of only appending them, showed improved results.
This concept is further elaborated on and extended by Multiplicative Language Codes and
Adaptive Neural Language Codes in the related PhD thesis [Mül18].

25



Chapter 3. Related Work

Cross-lingual Word-to-phoneme Alignment

In [Sta+12], cross-lingual word-to-phoneme alignment was used to derive a word segmentation.
The applied methods outperformed state-of-the-art monolingual word segmentation approaches
for an alignment of English words to Spanish phonemes.

End-to-end Approaches in ASR

Experiments have shown that it is not always necessary to rely on a hidden Markov model or
even an explicit phonetic representation to achieve good results in the field of ASR in general:

Especially BiLSTMs have recently been used in end-to-end systems, e.g. in [GJ14], where only
minimal preprocessing and no explicit phonetic representation or prior linguistic information
were sufficient to achieve a word error rate (WER) of 27.3%. By supplementing a lexicon of
allowed words, the WER could be reduced to 21.9% and using a trigram language model further
reduced it to 8.2%.

[Han+14] also showed that BiLSTMs are suitable for performing end-to-end ASR but although
they showed promising results, they did not outperform HMM-based systems. The experiments
also showed that recurrent connections, especially bidirectional ones, e.g. inside (Bi-)LSTMs,
are critical for good performance in the task of speech recognition.
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4 Main Contributions

4.1 Hybrid HMM/ANN System

The task at hand is to align a given audio recording of speech with the corresponding phonemes,
extracted from a given orthographic transcript. This orthographic transcript can be mapped
to a phonetic transcript using a pronunciation dictionary, which maps words to sequences
of phonemes that constitute the pronunciation of that given word. This phonetic transcript
provides the topology for an HMM whose states correspond to phonemes and whose emitted
symbols correspond to feature vectors of speech.

Different phones sound differently and so their typical feature vectors can in principle be dis-
tinguished. This distinction is a typical classification task and so it’s appropriate to experiment
with different connectionist models in order to solve it. Thus, various cross-lingual artificial
neural networks will estimate posterior phoneme probabilities for given feature vectors. By cal-
culating the prior probabilities for all phonemes, and applying Bayes theorem, one can obtain
posterior probabilities for emitting a feature vector in a given phoneme state of the HMM:

P (F | Q) =
P (Q | F )P (F )

P (Q)
,

where P (F ) is the probability to see feature vector F in the audio data, which is assumed to
be a constant, P (Q) is the prior probability of (sub-)phoneme/HMM-state Q, P (Q | F ) is the
probability of feature vector F belonging to (sub-)phoneme Q, i.e. the classification result of
the ANN, and P (F | Q) is the probability of emitting feature vector F in HMM-state Q, i.e. the
required probability for performing the Viterbi algorithm. These probabilities, together with
the assumption of uniformly distributed state transition and initial probabilities, are sufficient
for building the HMM.

Solving the Decoding problem for the described HMM and the series of feature vectors that
were obtained from the audio recording gives the most probable state sequence responsible for
emitting this sequence of feature vectors. This state sequence corresponds to a sequence of
phonemes over time, which in turn yields an alignment of phonemes and audio recording over
time.

This process is also presented visually in figure 4.1.

4.2 Experimental Pipeline

There are several steps involved in running the HMM/ANN pipeline for a single experiment.

4.2.1 Preparation and Preprocessing

Preparation of the Data

In order to perform the multilingual approach outlined above, data sets from various languages
of the Common Voice project (see 4.3.3) have been united and preprocessed.
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4.2 Experimental Pipeline

HMM

Orthographic
transcript

ANN

Phonetic
transcript

HMM
topology

Audio
recording

Feature
vectors

ANN

Viterbi
algorithm

States
q1, q2, . . .

Alignment
/a/, /b/, . . .

P (F | Q)

Figure 4.1: Overview of the utilized hybrid HMM/ANN system. The input is given as pairs
of audio recordings and their corresponding orthographic transcript. The left path
of the diagram shows the processing of the audio recording in a neural network
pipeline in order to obtain the probability P (F | Q) of feature F being emitted in
HMM state Q. In the right path, the phonetic transcript is obtained by looking up
the words of the given orthographic transcript in a pronunciation dictionary. Based
on this phonetic transcript, the topology of an HMM is built and used to perform
the Viterbi algorithm, using the provided posterior probability from the left path.
The produced most probable sequence of states is then used to obtain an alignment.
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4.2.2 Bootstrapping a Multilingual Acoustic Model

For the multilingual data set, 32,000 utterances of five languages have been combined to form
a data set of 160,000 utterances, or 207 hours of speech recordings.

The chosen known languages constituting this data set are German, Russian, French, Spanish,
and Swedish.

English was chosen as unknown language, or target language of the cross-lingual approach. The
English data set is used for evaluation and consists of 32,0000 utterances, or 50 hours in total.

Preprocessing of the Audio Signals

All the audio recordings are preprocessed in Janus as follows:

First, the audio signal is mapped from the time domain to the frequency domain by performing
a fast Fourier transform ([Coc+67]) on 257 points at a sampling rate of 16kHz.

Secondly, a Mel scale filter bank matrix, an array of 40 bandpass filters for the Mel scale, is
created. The Mel scale was invented to mimic the non-linear perception of sound in the human
ear ([SVN37]). Mel filter banks give a higher resolution at low frequencies and a lower resolution
at high frequencies, as the human ear is less discriminative at higher frequencies as well. This
matrix is then applied to each sampled frame by matrix multiplication.

Afterwards, Log-Mel features are calculated by taking the logarithm as log(Mel + 1).

Finally, mean subtraction and normalization are performed to normalize twice the standard
deviation to the value 1.

4.2.2 Bootstrapping a Multilingual Acoustic Model

A multilingual acoustic model, i.e. the output of the ANN part in the outlined system, can be
bootstrapped by basing it on a monolingual acoustic model and iteratively improving it from
there.

As a preparation for the bootstrapping process, the pronunciation dictionaries of all the lan-
guages that are to be part of the multilingual system have to be mapped to only use the
phonemes present in the phoneme inventory of the language of the monolingual system.

In the first iteration, the monolingual acoustic model together with the phoneme mapping can
be used to roughly align the multilingual data set. The thusly labeled data set can now be
used to create a first multilingual acoustic model.

The previously obtained feature vectors and corresponding labels of the training data set are
then used to train the respective neural network of the current experiment. After training the
network for multiple epochs, the whole training data set is evaluated in order to produce a new
acoustic model, i.e. the probabilities for seeing the given feature vectors, given a state of the
HMM. As the neural network is a classifier for different HMM states (subphonemes), given a
feature vector of speech, the obtained probabilities are actually just the posterior probabilities
of the HMM states given a feature vector, but can be transformed into the required probabilities
by separately calculating the prior probabilities for all states and applying Bayes theorem.

The HMMs work with scores instead of raw probabilities, so the posterior emission probabilities
are transformed to scores as follows:

score = −8 log(prob).

These produced scores for the different utterances in the training data set are written to disk
as Janus-readable matrices and can thus be loaded for the next iteration, where the previously
existing system for labeling is replaced with the new acoustic model.
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4.4 Experiments

This process is iterated, in order to achieve more accurate acoustic models in each subsequent
pass.

4.2.3 Evaluation

Finally, the multilingual acoustic model is used in the neural network to evaluate – i.e. obtain
scores for – the evaluation data set. These scores are then used in a final labeling process to
obtain the phoneme alignment of the evaluation data set.

At last, the obtained alignments are compared to the ground truth by the scoring processes
described in 5.1.

4.3 Toolkits, Libraries and Data sets

4.3.1 Janus Speech Recognition Toolkit

All tasks regarding the HMM utilized in this thesis and the preprocessing were carried out with
the Janus Speech Recognition Toolkit (JRTk; [Fin+97]) developed at the Karlsruhe Institute of
Technology and Carnegie Mellon University. The JRTk is implemented in the C programming
language, but grants high flexibility through its object-oriented programming interface in the
Tcl programming language [Ous+89].

The JRTk was used not only for performing the final Viterbi alignment, but for iteratively
labeling the data set in the bootstrapping process and for preprocessing as well.

4.3.2 PyTorch

PyTorch ([Pas+19]) is an open source machine learning library based on the Torch library
([CBM02]). Its main features are the support of GPU acceleration for tensor computing and
deep neural networks built on a type-based automatic differentiation system.

PyTorch was used for training and evaluating the neural networks utilized in this thesis.

4.3.3 Common Voice

All the used raw audio recordings and their respective orthographic transcript stem from the
Common Voice project ([Ard+19]).

The Common Voice data set is a multilingual collection of transcribed speech, intended for
speech technology research and development. The project heavily relies on crowdsourcing for
data collection and validation.

In this thesis, data from the languages English, German, Russian, French, Spanish and Swedish
is used.

4.4 Experiments

As the whole HMM/ANN pipeline as described above is consistent across all experiments, this
section is limited to describe the differences between the neural networks only. The networks
are trained and utilized for phoneme classification, thus providing the HMMs with emission
probabilities.
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4.4.1 Monolingual Feedforward Neural Network

Although their architectures differ heavily, there are some commonalities most of them share:
All networks are trained on the task of phoneme classification by receiving preprocessed audio
frames as input and the corresponding phoneme label as one-hot encoded output. As they
all output a probability distribution via a softmax activation function in the last layer, cross
entropy loss is applied for optimization.
A minibatch size of 1024 and a split of 90/10 into training and validation set have been used
during the training across all experiments. The training was usually performed for eight epochs
in both iterations and the pretrained network states from the first iteration were used as initial
states for the second iteration, as that was observed to lead to better results. During the
training of the neural networks, the data sets were shuffled.

Each networks validation accuracies during training are presented in a separate table. Table 5.1
compares all networks cross-lingual phoneme classification accuracies on data of the target
language.

4.4.1 Monolingual Feedforward Neural Network

The näıve approach, or baseline experiment, consists of a monolingual feedforward neural net-
work. This approach, albeit simple, is already cross-lingual, because a German system is used
to align an English data set. In order to make the system align English data, all the phonemes
in the English pronunciation dictionary have to be mapped to their German counterparts first.
The English orthographic transcripts can then be mapped to German phonetic transcripts,
which in turn can be aligned using the German system.

Architecture

The neural network used for German phoneme classification consists of an input layer of 600
neurons, which receive a context of 15 feature vectors of size 40 each, followed by five hidden
layers of 2,000 neurons each, one bottleneck layer of 1,000 neurons and an output layer of
16,130 neurons. The neurons in the output layer represent the probability distribution over
16,130 subphonemes that is output by the network for each classification sample. Each layer,
except the last one, uses the ReLU activation function. The output layer applies a softmax
activation in order to create the aforementioned probability distribution.

The networks architecture is visualized in figure 4.2.

Training

The monolingual network was trained with SGD using a learning rate progression of η = 0.08
for four epochs, then halving it every subsequent epoch. Its final validation accuracy was 48.1%
after 13 training epochs. All the learning rates and validation accuracies during training are
listed in table 4.1.

4.4.2 Multilingual Feedforward Neural Network

Architecture

The multilingual feedforward network receives a context of eleven frames in total – five previous
to the one to be classified and five subsequent ones. These 11 × 40 = 440 input values are
concatenated and passed into the networks input layer.
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4.4 Experiments
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Figure 4.2: Monolingual feedforward neural network on eight layers with 600, five times 2,000,
1,000 and 16,130 neurons.
The applied activation functions are written below each layer. No dropout was
applied during training.

Monolingual Feedforward Neural Network

Epoch Learning Rate η Validation Accuracy
1 0.08 38.5%
2 0.08 41.4%
3 0.08 42.4%
4 0.08 42.7%
5 0.04 44.3%
6 0.02 45.5%
7 0.01 46.4%
8 0.005 47.0%
9 0.0025 47.5%
10 0.00125 47.7%
11 0.000625 47.9%
12 0.000313 48.1%
13 0.000156 48.1%

Table 4.1: Learning rates and validation accuracies of the monolingual feedforward neural net-
work.
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4.4.3 Multilingual Time Delay Neural Network
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Figure 4.3: Multilingual feedforward neural network on eight layers with 440, five times 1,600,
800 and 8,126 neurons each.
The activation functions and dropout probabilities are written below each layer.

The network architecture is defined by eight layers of 440, five times 1,600, 800 and 8,126
neurons each. The input layer receives eleven feature vectors of length 40. Dropout with a
probability of p = 0.5 is applied after each layer, except for the last one. Every layer uses a
ReLU activation function, except for the last one, which uses a softmax activation in order to
output the desired probability distribution across 8,126 subphonemes.

The whole architecture is visualized in figure 4.3.

Training

Instead of conventional SGD, the Adam optimizer with an initial learning rate of η = 10−4 was
utilized. Training was performed for 8 epochs in both iterations of the bootstrapping process,
with a final validation accuracy of 51.1% in the first iteration and 48.4% in the second one. All
validation accuracies are listed in table 4.2.

4.4.3 Multilingual Time Delay Neural Network

Architecture

The time delay neural network receives a context of 25 frames per classification. However,
these 25× 40 = 1, 000 inputs are not stacked like they were for the feedforward networks, but
convolved with a sliding 40×8 filter with a stride and dilation of 1. This defines the dimensions
of the next layer as 80 × 18, where another filter of size 80 × 8 is applied. The filters of the
next three time delay layers – with sizes 80× 5, 160× 5, 160× 3 and 800× 1 – further shrink
the dimensions to 800 × 1. These resulting 800 neurons are then fed into a final feedforward
layer to output 8,126 values.
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4.4 Experiments

Multilingual Feed Forward Neural Network

Epoch Iteration 1 Iteration 2
1 45.8% 42.3%
2 49.6% 47.8%
3 50.6% 48.2%
4 51.1% 48.4%
5 51.1% 48.4%
6 51.2% 48.4%
7 51.2% 48.4%
8 51.1% 48.4%

Table 4.2: Validation accuracies of the multilingual feedforward neural network, across both
iterations of the bootstrapping process.

Multilingual TDNN

Epoch Iteration 1 Iteration 2
1 46.7% 40.7%
2 52.1% 46.0%
3 52.7% 46.8%
4 53.1% 47.2%
5 53.3% 47.2%
6 53.3% 47.6%
7 53.4% –
8 53.4% –

Table 4.3: Validation accuracies of the multilingual time delay neural network, across both
iterations of the bootstrapping process.

Dropout with a probability of p = 0.5 is applied after each layer, except for the last one. Every
layer uses a ReLU activation function, except for the last one, which uses a softmax activation
in order to output the desired probability distribution across 8,126 subphonemes.

Each of the time delay layers also applies batch normalization.

The whole architecture is visualized in figure 4.4.

Training

Again, the Adam optimizer was used during training, this time with an initial learning rate of
η = 10−3. Training was performed for 8 epochs in the first and 6 epochs in the second iteration
of the bootstrapping process, with a final validation accuracy of 53.4% in the first iteration and
47.6% in the second one. All validation accuracies are listed in table 4.3.

4.4.4 Multilingual Stacked Bidirectional Long Short-Term Memory

Architecture

The multilingual stacked BiLSTM receives a total context of 81 frames per classification – 40
previous and 40 subsequent ones to the frame to be classified. These 81 × 40 = 3, 240 inputs
are neither stacked like for the feedforward networks, nor convolved with a sliding filter like in
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4.4.4 Multilingual Stacked Bidirectional Long Short-Term Memory
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Figure 4.4: Multilingual time delay neural network on six layers, consisting of five convolu-
tional time delay layers with dimensions 80 × 18, 80 × 11, 160 × 7, 160 × 3 and
800× 1, followed by a feedforward output layer of size 8,126. The filter sizes of the
first five layers are 40× 8, 80× 8, 80× 5, 160× 5 and 160× 3.
The activation functions, dropout probabilities and applications of batch normal-
ization are written below each layer.

the time delay neural networks. Instead, they are fed into the stacked BiLSTM as a sequence
of inputs over time in both time dimensions.

The stacked BiLSTM uses hidden representations of size 20 and comprises two layers of BiL-
STMs. The output of the stacked BiLSTM, hence of dimension 2 × 81 × 20 = 3, 240, is then
concatenated and passed through a ReLU activation function and into a new layer of size 1,600,
again with a ReLU activation and dropout with probability p = 0.5. The final layer is a softmax
layer of size 8,126 again.

The whole architecture is visualized in figure 4.5.

Training

The Adam optimizer with an initial learning rate of η = 10−4 was utilized during the training
processes of the stacked BiLSTM. Training was performed for 8 epochs in each iteration of the
bootstrapping process, with a final validation accuracy of 53.0% in the first iteration and 47.8%
in the second one. All validation accuracies are listed in table 4.4.
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Figure 4.5: Multilingual stacked bidirectional LSTM on two internal layers and hidden repre-
sentations of size 20.
The input is fed into the stacked BiLSTM first, then processed in two feedforward
layers of sizes 1,600 and 8,126. The activation functions and dropout probabilities
(if applied) are denoted inside the layers.

Multilingual Stacked BiLSTM

Epoch Iteration 1 Iteration 2
1 49.7% 44.6%
2 51.1% 46.0%
3 51.8% 46.6%
4 52.2% 46.9%
5 52.5% 47.3%
6 52.7% 47.5%
7 52.9% 47.5%
8 53.0% 47.8%

Table 4.4: Validation accuracies of the multilingual stacked BiLSTM neural network, across
both iterations of the bootstrapping process.
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5 Evaluation

5.1 Scoring Methods

In order to evaluate different alignment methods, a scoring method is necessary. There are
several possible methods which can be applied.

Mean Squared Error (MSE) Score One of the most popular scoring methods in general,
the Mean Squared Error (MSE) Score is calculated by taking the average of the squares of the
errors of a given alignment. Here, the errors are defined as the deviations of predicted phoneme
boundaries from a given ground truth alignment. More formally, letting Yi be the point in time
of transitioning from phoneme i− 1 to phoneme i in the ground truth alignment and Ŷ i be the
predicted point in time, the MSE Score is given as

1

n

n∑︂
i=1

(Yi − Ŷ i)
2.

Box Score The Box Score is inspired by the scoring method used in [Fra+16]. This scoring
method counts the errors in the predicted phoneme boundaries, normalized by the total amount
of phonemes in an alignment. Here, an error is a binary indicator of whether a given boundary
was predicted correctly or not. However, a small error tolerance of 20 milliseconds in both
directions is granted in order to exclude near misses from the errors. The score is then given as
the amount of correctly (within the tolerance) guessed boundaries, divided by the total amount
of phonemes in the alignment.

Overlap Score Another way of scoring a predicted alignment against a given ground truth
is to calculate the phoneme overlap between the two. The resulting Overlap Score is given as
the total time of matching phonemes divided by the total temporal length of the alignment.

5.2 Results

All experiments have been evaluated once after each performed iteration of the bootstrapping
process. The outlined scoring methods were applied on the alignments and the resulting scores
are presented in this section.

The different scoring results are compared more compactly in tables 5.2, 5.3 and 5.4. Table 5.1
also compares all networks’ cross-lingual phoneme classification accuracies for reference.

5.2.1 Monolingual Feedforward Neural Network

During evaluation, the monolingual system achieved a total MSE score of s̄MSE = 0.1161, with
a standard deviation of σMSE = 6.3992. The median of all MSE scores was s̃MSE = 0.0028 and
the trimmed mean (onesided and by 10%, to exclude outliers) was s̄MSE

0.1 = 0.0042.
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5.2 Results

When scored with the box scoring method, the monolingual system achieved a mean box score
of s̄box = 0.4303, with a standard deviation of σbox = 0.1335. The median of all box scores was
s̃box = 0.44 and the trimmed mean was s̄box0.1 = 0.4588.

Finally, with the overlap scoring method, the system achieved a mean overlap score of s̄overlap =
0.6708, with a standard deviation of σoverlap = 0.1172. The median of all overlap scores was
s̃overlap = 0.6938 and the trimmed mean was s̄overlap0.1 = 0.6998.

Summary

This experiment serves as a baseline for the other experiments. It scored a total MSE of 0.1161,
while correctly predicting about 41.03% of phoneme boundaries (within the granted tolerance
of 20 ms) and achieving a phoneme overlap of about 69.86%.

5.2.2 Multilingual Feedforward Neural Network

First Iteration

In the first iteration of the bootstrapping process, the multilingual system utilizing a feedfor-
ward neural network achieved a total MSE score of s̄MSE = 0.1073, with a standard deviation
of σMSE = 4.5812. This is the best total MSE score across all experiments. The median of all
MSE scores was s̃MSE = 0.0058 and the trimmed mean was s̄MSE

0.1 = 0.0069.

With the box scoring method, it achieved a mean score of s̄box = 0.0709, with a standard
deviation of σbox = 0.0498. The median of all box scores was s̃box = 0.0652 and the trimmed
mean was s̄box0.1 = 0.0787.

Finally, with the overlap scoring method, the system achieved a mean score of s̄overlap = 0.4161,
with a standard deviation of σoverlap = 0.0978. The median of all overlap scores was s̃overlap =
0.4174 and the trimmed mean was s̄overlap0.1 = 0.4360.

Second Iteration

In its second iteration, this system achieved a slightly worse total MSE score of s̄MSE = 0.1489,
with a standard deviation of σMSE = 4.5837. The median of all MSE scores was s̃MSE = 0.0134
and the trimmed mean was s̄MSE

0.1 = 0.0183.

The box scores were also worse than in the first iteration, with a mean box score of s̄box = 0.0229,
with a standard deviation of σbox = 0.0326. The median of all box scores was s̃box = 0.0122
and the trimmed mean was s̄box0.1 = 0.0254.

A similar statement can be made about the overlap scoring method, where the system achieved
a mean overlap score of s̄overlap = 0.1832, with a standard deviation of σoverlap = 0.0878. The
median of all overlap scores was s̃overlap = 0.1750 and the trimmed mean was s̄overlap0.1 = 0.1981.

Summary

It can be seen that the results heavily depend on the applied scoring method.
Regarding the MSE scoring, the system encapsulating the multilingual feedforward network
performed similar to the monolingual system – with a slightly better overall MSE score –
although having fewer parameters, training data and epochs.
However, when considering the overlap scoring, it performed worse and with the box scoring it
performed drastically worse.
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5.2.3 Multilingual Time Delay Neural Network

These effects were even stronger in the second iteration of the bootstrapping process. This is
probably linked to the dropped validation accuracies during second iteration training of the
network.

5.2.3 Multilingual Time Delay Neural Network

First Iteration

In the first iteration, the system utilizing the multilingual time delay neural network achieved
a total MSE score of s̄MSE = 0.1452, with a standard deviation of σMSE = 5.1452. The median
of all MSE scores was s̃MSE = 0.0180 and the trimmed mean was s̄MSE

0.1 = 0.0196.

When scored with the box scoring method, the time delay system achieved a mean box score
of s̄box = 0.0146, with a standard deviation of σbox = 0.0253. The median of all box scores was
s̃box = 0.0 and the trimmed mean was s̄box0.1 = 0.0163.

Finally, with the overlap scoring method, the system achieved a mean overlap score of s̄overlap =
0.1133, with a standard deviation of σoverlap = 0.0721. The median of all overlap scores was
s̃overlap = 0.1024 and the trimmed mean was s̄overlap0.1 = 0.1242.

Second Iteration

In the second iteration, this system achieved a total MSE score of s̄MSE = 0.1616, with a
standard deviation of σMSE = 3.3311. The median of all MSE scores was s̃MSE = 0.0579 and
the trimmed mean was s̄MSE

0.1 = 0.0594.

With the box scoring method, the time delay system achieved a mean box score of s̄box = 0.0044,
with a standard deviation of σbox = 0.0154. The median of all box scores was s̃box = 0.0 and
the trimmed mean was s̄box0.1 = 0.0049.

Finally, with the overlap scoring method, the system achieved a mean overlap score of s̄overlap =
0.0181, with a standard deviation of σoverlap = 0.0312. The median of all overlap scores was
s̃overlap = 0.0035 and the trimmed mean was s̄overlap0.1 = 0.0201.

Summary

As with the feedforward system, the results of the system encapsulating the multilingual time
delay neural network heavily depend on the scoring method.
With MSE scoring, the TDNN system performed slightly worse than the multilingual feedfor-
ward system, although its network had a higher validation accuracy during training. It also
performed worse than the multilingual feedforward system in the other scoring methods.
Like with the feedforward system, these effects were amplified in the second iteration of the
bootstrapping process.

5.2.4 Multilingual Stacked Bidirectional Long Short-Term Memory

First Iteration

The system encapsulating the most complexity, i.e. the one utilizing a stacked BiLSTM net-
work, achieved a total MSE score of s̄MSE = 0.3180 in the first iteration, with a standard de-
viation of σMSE = 8.6341. The median of all MSE scores was s̃MSE = 0.1639 and the trimmed
mean was s̄MSE

0.1 = 0.1628.
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5.2 Results

When scored with the box scoring method, the BiLSTM system achieved a mean box score of
s̄box = 0.0011, with a standard deviation of σbox = 0.0088. The median of all box scores was
s̃box = 0.0 and the trimmed mean was s̄box0.1 = 0.0012.

Finally, with the overlap scoring method, the system achieved a mean overlap score of s̄overlap =
0.0021, with a standard deviation of σoverlap = 0.0112. The median of all overlap scores was
s̃overlap = 0.0 and the trimmed mean was s̄overlap0.1 = 0.0023.

Second Iteration

In its second iteration, the BiLSTM system achieved a total MSE score of s̄MSE = 0.7250, with
a standard deviation of σMSE = 4.1788. The median of all MSE scores was s̃MSE = 0.6292 and
the trimmed mean was s̄MSE

0.1 = 0.6084.

With the box scoring method, the BiLSTM system achieved a mean box score of s̄box = 0.0009,
with a standard deviation of σbox = 0.0082. The median of all box scores was s̃box = 0.0 and
the trimmed mean was s̄box0.1 = 0.0010.

Finally, with the overlap scoring method, the system achieved a mean overlap score of s̄overlap =
0.0013, with a standard deviation of σoverlap = 0.0112. The median of all overlap scores was
s̃overlap = 0.0 and the trimmed mean was s̄overlap0.1 = 0.0014.

Summary

Across all scoring methods, the BiLSTM system performed the worst out of all tested archi-
tectures. This is despite it having the highest cross-lingual phoneme classification accuracy on
the target data across all multilingual networks1.
The second iteration system also had a decreased performance.

1See table 5.1.
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5.2.4 Multilingual Stacked Bidirectional Long Short-Term Memory

Experiment Iteration 1 Iteration 2

Multilingual FFNN 39.5% 36.8%
Multilingual TDNN 39.6% 33.5%

Multilingual Stacked BiLSTM 41.1% 30.2%

Table 5.1: Comparison of the cross-lingual phoneme classification accuracies on the data set of
the target languages (English).

Experiment s̄MSE σMSE s̃MSE s̄MSE
0.1

Monolingual FFNN (1) 0.1161 6.3992 0.0028 0.0042
Multilingual FFNN (1) 0.1073 4.5812 0.0058 0.0069
Multilingual TDNN (1) 0.1452 5.1452 0.0180 0.0196

Multilingual Stacked BiLSTM (1) 0.3180 8.6341 0.1639 0.1628
Multilingual FFNN (2) 0.1489 4.5837 0.0134 0.0183
Multilingual TDNN (2) 0.1616 3.3311 0.0579 0.0594

Multilingual Stacked BiLSTM (2) 0.7250 4.1788 0.6292 0.6084

Table 5.2: Comparison of the MSE scoring results between all experiments in the first and
second iteration: total MSE score s̄MSE, as well as its standard deviation σMSE,
median s̃MSE and trimmed mean (10%) s̄MSE

0.1 .

Experiment s̄box σbox s̃box s̄box0.1

Monolingual FFNN (1) 0.4303 0.1334 0.44 0.4588
Multilingual FFNN (1) 0.0709 0.0498 0.0652 0.0787
Multilingual TDNN (1) 0.0146 0.0253 0.0 0.0163

Multilingual Stacked BiLSTM (1) 0.0011 0.0088 0.0 0.0012
Multilingual FFNN (2) 0.0229 0.0326 0.0122 0.0254
Multilingual TDNN (2) 0.0044 0.0154 0.0 0.0049

Multilingual Stacked BiLSTM (2) 0.0009 0.0082 0.0 0.0010

Table 5.3: Comparison of the box scoring results between all experiments in the first and second

iteration: mean box score s̄box, as well as its standard deviation σbox, median s̃box

and trimmed mean (10%) s̄box0.1 .

Experiment s̄overlap σoverlap s̃overlap s̄overlap0.1

Monolingual FFNN (1) 0.6708 0.1172 0.6938 0.6998
Multilingual FFNN (1) 0.4161 0.0978 0.4174 0.4360
Multilingual TDNN (1) 0.1133 0.0721 0.1024 0.1242

Multilingual Stacked BiLSTM (1) 0.0021 0.0112 0.0 0.0023
Multilingual FFNN (2) 0.1832 0.0878 0.1750 0.1981
Multilingual TDNN (2) 0.0181 0.0312 0.0035 0.0201

Multilingual Stacked BiLSTM (2) 0.0013 0.0112 0.0 0.0014

Table 5.4: Comparison of the overlap scoring results between all experiments in the first and
second iteration: mean overlap score s̄overlap, as well as its standard deviation σoverlap,
median s̃overlap and trimmed mean (10%) s̄overlap0.1 .
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6 Conclusion

This chapter forms the conclusion to the thesis.

First, the whole work is briefly summarized, then the obtained results are put into context and
interpreted, and finally, possible directions for further research are proposed.

6.1 Summary

The goal of this thesis was to apply cross-lingual, multilingual methods on the task of phoneme
alignment. For this goal, three different neural network architectures were built, trained and
utilized in a hybrid HMM/ANN system to align multilingual data. This process was iterated
to bootstrap a multilingual acoustic model and the resulting system was used to cross-lingually
align data from a previously unseen target language. Finally, the results were scored and
compared against each other.

The first feedforward neural network was trained monolingually on German data, while the
others – another feedforward neural network, a time delay neural network and a stacked bidi-
rectional long short-term memory network – were trained on a multilingual data set, consisting
of Spanish, French, Russian, Swedish and German data. All networks were put to use in a
cross-lingual context, as they were evaluated on English data.

6.2 Interpretation of Results

In general, the multilingual systems did not outperform the monolingual system, although all
multilingual networks had higher phoneme classification accuracies, at least in the first iteration
of the bootstrapping process1.
A reason for the missing transfer of these improved results into the alignment results could be
an imprecise cross-lingual application of the systems, i.e. an imprecise mapping of phonemes
between the five training languages and the target language.

The systems utilizing more complex network architectures had a decreased alignment perfor-
mance compared to the ones using simpler architectures. This is the case despite them having
increased phoneme classification accuracies, not only on the training data set, but also on the
evaluation data set in the target language2.

The performance of all systems decreased in the second iteration of the bootstrapping process.
This holds for considering the phoneme classification accuracy of their neural networks, cross-

1When comparing the validation/phoneme recognition accuracies of the monolingual and multilingual systems,
one has to take into account that different validation data sets are used for this comparison. However, it can
be assumed that the multilingual data set is more diverse than the monolingual one, as it contains German
data plus data from four other languages. Still, every multilingual network performed better on the isolated
task of phoneme classification than the monolingual one.

2See table 5.1.
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6.3 Further Research

lingual phoneme classification accuracy of their networks or alignment results of the whole
systems.
Again, an imprecise mapping of phonemes could be the reason for this phenomenon, as this
could lead to inaccurate labeling results in the first iteration, which in turn would decrease
the quality of the training data in the second iteration, making it more complex to learn. The
consequences would then be a decreased neural network validation accuracy and worse labeling
results.

6.3 Further Research

Further research could address the possible problems stated in the above section, with the aim
of alleviating them and obtaining better results.
This would include a more careful mapping of phonemes between languages in the bootstrapping
process by employing more profound linguistic knowledge or even using data-driven approaches.
Another attempt could be to choose the training languages more carefully, i.e. by comparing
lexical similarities or other linguistic distances to the target language.

An alternative approach could be to improve the systems capability to handle multilingual
data, for example by introducing modulation techniques3.

3See the results presented in the Related Work chapter.
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